PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wearable acceleration sensor application in unilateral trans-tibial amputation prostheses

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The availability of human walking gait data collected from the wearable acceleration sensors for trajectory control of an active artificial ankle joint in the unilateral trans-tibial prosthesis was investigated in this study. It is observed that the collected acceleration data can be used in the rulebased control of the prosthetic leg. A portable microprocessor-based data acquisition system, and data transfer module were designed for capturing the acceleration signals during walking. Flexionextension angle pattern of ankle joint was determined from acceleration signals of two tri-axial wearable accelerometers placed on the shank and foot segments. This pattern was utilized for control of the active artificial ankle joint in the trans-tibial prosthesis. This approach may have the potential of contributing the development of better prostheses.
Twórcy
autor
  • Sakarya University, Mechanical Engineering Department, Esentepe Campus, 54187 Sakarya, Turkey
autor
  • Sakarya University, Mechanical Engineering Department, Esentepe Campus, Sakarya, Turkey
Bibliografia
  • [1] Jiménez-Fabián R, Verlinden O. Review of control algorithms for robotic ankle systems in lower-limb orthoses, prostheses, and exoskeletons. Med Eng Phys 2012;34(4):397–408. http://dx.doi.org/10.1016/j.medengphy.2011.11.018.
  • [2] Andrysek J. Lower-limb prosthetic technologies in the developing world: a review of literature from 1994–2010. Prosthet Orthot Int 2010;34(4):378–98. http://dx.doi.org/10.3109/03093646.2010.520060.
  • [3] Martins MM, Santos CP, Frizera-Neto A, Ceres R. Assistive mobility devices focusing on Smart Walkers: classification and review. Robot Autonom Syst 2012;60(4):548–62. http://dx.doi.org/10.1016/j.robot.2011.11.015.
  • [4] Hansen AH, Childress DS, Miff SC, Gard SA, Mesplay KP. The human ankle during walking: implications for design of biomimetic ankle prostheses. J Biomech 2004;37(10):1467–74. http://dx.doi.org/10.1016/j.jbiomech.2004.01.017.
  • [5] Blaya JA, Herr H. Adaptive control of a variable-impedance ankle–foot orthosis to assist drop-foot gait. IEEE Trans Neural Syst Rehabil Eng 2004;12(1):24–31. http://dx.doi.org/10.1109/tnsre.2003.823266.
  • [6] Popović D, Tomović R, Tepavać D, Schwirtlich L. Control aspects of active above knee prosthesis. Int J Man-Mach Stud 1991;35(6):751–67. http://dx.doi.org/10.1016/S0020-7373(05)80159-2.
  • [7] Kapti AO, Yucenur MS. Design and control of an active artificial knee joint. Mech Mach Theory 2006;41(12):1477–85. http://dx.doi.org/10.1016/j.mechmachtheory.2006.01.017.
  • [8] Pratt J, Krupp B, Morse C. Series elastic actuators for high fidelity force control. Ind Robot Int 2002;29(3):234–41. http://dx.doi.org/10.1108/01439910210425522.
  • [9] Paluska D, Herr H. The effect of series elasticity on actuator power and work output: implications for robotic and prosthetic joint design. Robot Autonom Syst 2006; 54(8):667–73. http://dx.doi.org/10.1016/j.robot.2006.02.013.
  • [10] Sugar TG. A novel selective compliant actuator. Mechatronics 2002;12(9):1157–71. http://dx.doi.org/10.1016/S0957-4158(02)00021-1.
  • [11] Bharadwaj K, Sugar TG, Koeneman JB, Koeneman EJ. Design of robotic gait trainer using spring over muscle actuators for ankle stroke rehabilitation. J Biomech Eng 2005;127 (6):1009–13. http://dx.doi.org/10.1115/1.2049333.
  • [12] Varol HA, Sup F, Goldfarb M. Multiclass real-time intent recognition of a powered lower limb prosthesis. IEEE Trans Biomed Eng 2010;57(3):542–51. http://dx.doi.org/10.1109/tbme.2009.2034734.
  • [13] Ha KH, Varol HA, Goldfarb M. Volitional control of a prosthetic knee using surface electromyography. IEEE Trans Biomed Eng 2011;58(1):144–51. http://dx.doi.org/10.1109/TBME.2010.2070840.
  • [14] Morris JRW, Accelerometry:. A technique for the measurement of human body movements. J Biomech 1973;6:729–36. http://dx.doi.org/10.1016/0021-9290(73)90029-8.
  • [15] Bouten CVC, Koekkoek KTM, Verduin M, Kodde R, Janssen JD. A triaxial accelerometer and portable data processing unit for the assessment of daily physical activity. IEEE Trans Biomed Eng 1997;44(3):136–47. http://dx.doi.org/10.1109/10.554760.
  • [16] Bussmann JBJ, Van de Laar YM, Neeleman MP, Stam HJ. Ambulatory accelerometry to quantify motor behavior in patients after failed back surgery: a validation study. Pain 1998;74(2):153–61. http://dx.doi.org/10.1016/S0304-3959(97)00161-9.
  • [17] Foerster F, Smeja M, Fahrenberg J. Detection of posture and motion by accelerometry: a validation study in ambulatory monitoring. CHB 1999;15(5):571–83. http://dx.doi.org/10.1016/S0747-5632(99)00037-0.
  • [18] Kavanagh JJ, Barrett RS, Morrison S. Age-related differences in head and trunk coordination during walking. Hum Move Sci 2005;24(4):574–87. http://dx.doi.org/10.1016/j.humov.2005.07.003.
  • [19] Jasiewicz JM, Allum JHJ, Middleton JW, Barriskill A, Condie P, Purcell B, Li RCT. Gait event detection using linear accelerometers or angular velocity transducers in able-bodied and spinal-cord injured individuals. Gait Posture 2006;24(4):502–9. http://dx.doi.org/10.1016/j.gaitpost.2005.12.017.
  • [20] Lau H, Tong K. The reliability of using accelerometer and gyroscope for gait event identification on persons with dropped foot. Gait Posture 2008;27(2):248–57. http://dx.doi.org/10.1016/j.gaitpost.2007.03.018.
  • [21] Dejnabadi H, Jolles BM, Casanova E, Fua P, Aminian K. Estimation and visualization of sagittal kinematics of lower limbs orientation using body-fixed sensors. IEEE Trans Biomed Eng 2006;53(7):1385–93. http://dx.doi.org/10.1109/tbme.2006.873678.
  • [22] Favre J, Jolles BM, Aissaoui R, Aminian K. Ambulatory measurement of 3D knee joint angle. J Biomech 2008;41(5):1029–35. http://dx.doi.org/10.1016/j.jbiomech.2007.12.003.
  • [23] Takeda R, Tadano S, Todoh M, Morikawa M, Nakayasu M, Yoshinari S. Gait analysis using gravitational acceleration measured by wearable sensors. J Biomech 2009;42(3):223–33. http://dx.doi.org/10.1016/j.jbiomech.2008.10.027.
  • [24] Takeda R, Tadano S, Natorigawa A, Todoh M, Yoshinari S. Gait posture estimation using wearable acceleration and gyro sensors. J Biomech 2009; 42(15):2486–94. http://dx.doi.org/10.1016/j.jbiomech.2009.07.016.
  • [25] Lim CK, Luo Z, Chen I-M, Yeo SH. Wearable wireless sensing system for capturing human arm motion. Sens Actuators A Phys 2011;166(1):125–32. http://dx.doi.org/10.1016/j.sna.2010.10.015.
  • [26] Yuan Q, Chen I. Human velocity and dynamic behavior tracking method for inertial capture system. Sens Actuators A Phys 2012;183:123–31. http://dx.doi.org/10.1016/j.sna.2012.06.003.
  • [27] Gafurov D, Snekkenes E. Gait recognition using wearable motion recording sensors. J Adv Signal Process 2009;1–16. http://dx.doi.org/10.1155/2009/415817.
  • [28] Rong L, Jianzhong Z, Ming L, Xiangfeng H. Wearable acceleration sensor system for gait recognition. In: Proceedings of the 2nd IEEE Conference on Industrial Electronics and Applications (ICIEA) Harbin, China, May 23–25 2007. pp. 2654–9.
  • [29] Hang LW, Hong CY, Yen CW, Chang DJ, Nagurka ML. Gait verification using knee acceleration signals. Expert Syst Appl 2011;38(12):14550–4. http://dx.doi.org/10.1016/j.eswa.2011.05.028.
  • [30] Aoi S, Ogihara N, Funato T, Tsuchiya K. Sensory regulation of stance-to-swing transition in generation of adaptive human walking: a simulation study. Robot Autonom Syst 2012;60(5):685–91. http://dx.doi.org/10.1016/j.robot.2011.12.005.
  • [31] Garcia E, Arevalo JC, Muñoz G, Gonzalez-de-Santos P. Combining series elastic actuation and magnetorheological damping for the control of agile locomotion. Robot Autonom Syst 2011;59(10):827–39. http://dx.doi.org/10.1016/j.robot.2011.06.006.
  • [32] Kapti AO, Cerit M, Soydan Y, Ozcerit AT. Force controlled elastic actuator for lower limb prostheses. In: Proceedings of the XXII. Congress of the International Society of Biomechanics Cape Town, South Africa, July 5–9, 2009. p. 141.
  • [33] Winter DA. Biomechanics and motor control of human movement. In: Appendix A. New York: John Wiley & Sons; 1990: 213–67.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9857326c-6571-4286-9a00-52ba6e2f104b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.