PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modeling and Box-Behnken design optimization of microwave treatment of sulphidic gold flotation tailing

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
As raw minerals become scarcer every passing day, the need for the recovery of mine tailings becomes essential. This research highlights the use of microwave energy as a green alternative to otherwise environmentally harmful methods of ore tailing recovery. The obtained results indicate that a 1.4 ppm Au and 3.5 % S sample floated with Aeroflot 208 and Aerophine 3418A increased the concentration of tailings over 18 % S and 4 ppm, Au, for recovery yield, resulting in 84 % and 80 % recovery, respectively. After microwave irradiation, 90 % of sulphur removal was reached under the optimum conditions of 50 minutes of irradiation using 1000 W for 4 g of the sample. Overall with 96. 74 % correlation of the quadratic model using the Box-Behnken design and expressed coefficient R2 regression the model was proven to be suitable for heating and roasting processes of gold-bearing tailings.
Rocznik
Strony
art. no. 149929
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
  • Istanbul Technical University, Mining Faculty, Mineral Processing Engineering Department, 34469, Istanbul, Turkey
  • Esan Eczacibasi Industrial Raw Materials Co., R&D Center, Istanbul, Turkey
Bibliografia
  • ADAMS, M.D., 2016. Gold ore processing: project development and operations, 2nd ed. Elsevier: Cambridge, MA, USA, pp. 57–94.
  • AMANKWAH, R.K., OFORI-SARPONG, G., 2020. Microwave roasting of flash flotation concentrate containing pyrite, arsenopyrite, and carbonaceous matter. Miner. Eng. 151, 106312.
  • BENLİ, B., ADEM, A., 2020. The effects of microwave energy heating on loss of ignition of high sulfured gold flotation concentrate with Box-Behnken experiment design: optimization and modeling, Sci. Min. J. 59(1): 25-34, (in Turkish).
  • BUNDSCHUH, J., SUÁREZ, M.C., 2010. Introduction to the numerical modeling of groundwater and geothermal systems. 1st Edition. CRC Press.
  • ÇENGEL, Y., 2004. Heat transfer a practical approach. 2nd Edition. McGraw Hill Publication. Education.
  • DOUGHERTY, H.N., SCHISSLER, A.P., 2020. Gold ore processing: project development and operations. Ed. Mike Adam. In SME Mining Reference Handbook, 2nd Edition. Society for Mining, Metallurgy & Exploration.
  • FORREST, K., YAN, D., DUNNE, R., 2001. Optimization of gold recovery by selective gold flotation for copper-goldpyrite ores. Min. Eng. 14 (2) 227-241.
  • HEMINGWAY, B.S., KRUPKA, K.M., ROBIE, R.A., 1981. Heat capacities of the alkali feldspars between 350 and 1000 K from differential scanning calorimetry, the thermodynamic functions of the alkali feldspars from 298.15 to 1400 K, and the reaction quartz + jadeite: albite. Am. Miner. 66, 1202-1215.
  • HU, N., CHEN, W., DING, D., LI, F., DAI, Z., LI, G., WANG, Y., ZHANG, H., LANG, T., 2017. Role of water contents on microwave roasting of gold bearing high arsenic sulphide concentrate, Int. J. Miner. Process. 161, 72-77.
  • KHESIN, B.E., EPPELBAUM, L.V., 1994. Near‐surface thermal prospecting: Review of processing and Interpretation. Geophysics. 59(5):744-752.
  • KIM, B., CHO, H., CHANG, B., KIM, H., LEE, S., PARK, C., LEE, S., CHOI, N., 2019. Sequential microwave roasting and magnetic separation for removal of Fe and Ti impurities in low-grade pyrophyllite ore from Wando mine, South Korea, Miner. Eng. 140, 105881, 1-9.
  • KINGMAN, S., JACKSON, K., CUMBANE, A., BRADSHAW, S.M., ROWSON, N.A., GREENWOOD, R., 2004. Recent developments in microwave-assisted comminution, Int. J. Miner. Process., 74 (1-4): 71– 83.
  • LI, K., CHEN, J., PENG, J., OMRAN, M., CHEN, G., 2020. Efficient improvement for dissociation behavior and thermal decomposition of manganese ore by microwave calcination. J. Clean. Prod. 260, 121074.
  • LÓPEZ-HORTAS, L., TORRES, M. D., DOMÍNGUEZ, H., 2022. Equipment and recent advances in microwave processing. Innovative and Emerging Technologies in the Bio-marine Food Sector, 333-360.
  • MA, Y., CHENG, Y., SHANG, W., ZHAO, D., DUAN, X., 2020. Experimental study on coal permeability variation during microwave radiation, Adv. in Mater. Sci. Eng. 7270185, 1-18.
  • MYSLYVCHENKO, O., LITVYN, R., KRUSHYNSKA, L., ZGALAT-LOZYNSKYY, O., 2022. Phase transformations of ilmenite ore during microwave treatment at a frequency of 2.45 GHz under the influence of sucrose. Materialia, 101417.
  • Minitab, LLC., 2019. Getting Started with Minitab 19, p.15.
  • NANTHAKUMAR, B., PICKLES, C., KELEBEK, S., 2007. Microwave Pretreatment of a Double Refractory Gold Ore. Miner. Eng. 20 (11) 1109-1119.
  • PENG, Z., WANG, L., GU, F., TANG, H., RAO, F., TANG, H., RAO, M., ZHANG, Y., LI, G., JIANG, T., 2020. Recovery of chromium from ferronickel slag: A comparison of microwave roasting and conventional roasting strategies, Powder Technol., 372., 578-584.
  • PICKLES, C.A., 2009. Microwaves in extractive metallurgy: Part 1- Review of fundamentals. Miner. Eng. 22(13) 1102-1111.
  • POPOV, Y.A., BEREZIN, V.V., SOLOVIEV, G.A., 1987. Heat conduction of minerals: Izv. Vysshikh Uchebnykh Zavedeny, Ser. Geol. i Razv., 3, 83-93 (in Russian).
  • QIN, L., CHEN, G., XU, G., ZHEN, G., JIA, H., 2022. Microscopic liberation mechanisms of oolitic iron ore under microwave irradiation and optimization of irradiation parameters. Minerals Engineering, 178, 107402.
  • ROSENHOLTZ, J.l., SMITH, T.S., 1936. The dielectric constant of mineral powders. Am. Min. 115-120.
  • SAHOO, B.K., DE, S., MEIKAP, B.C., 2011. Improvement of grinding characteristics of Indian coal by microwave pre-treatment. Fuel processing technology, 92(10), 1920-1928.
  • USLU, T., ATALAY, Ü., 2004. Microwave heating of coal for enhanced magnetic removal of pyrite. Fuel Processing Technology, 85(1), 21-29.
  • WEI SUNG, N.G., WANG, Q., CHEN, M., 2020. A review of Preg-robbing and the impact of chloride ions in the pressure oxidation of double refractory ores, Miner. Process. Extr. Metall. https://doi.org/10.1080/08827508.2020.1793142.
  • WONG, H., GAUTHIER, A., NRIAGU, J., 1999. Dispersion and toxicity of metals from abandoned gold mine tailings at Goldenville, Nova Scotia, Canada. Sci. Total Environ., 228(1), 35-47.
  • XIA, W., YANG, J., LIANG, C., 2013. Effect of microwave pretreatment on oxidized coal flotation. Powder Technology, 233, 186-189.
  • YANG, K., LI, S., ZHANG, L., PENG, J., CHEN, W., XIE, F., MA, A., 2016. Microwave roasting and leaching of an oxide-sulphide zinc ore. Hydrometallurgy, 166, 243-251.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9856d2b4-01d0-4f56-a070-bee3d0e7b09e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.