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Abstract 
 

Owing to high plastic deformability while maintaining stress values constant and relatively low, ordered cellular structures are 

characterised by excellent properties and the ability to dissipate the impact energy. Due to the low weight, structures of this type can be 

used, among others, for different parts of motor vehicles. For tests, a trapezoidal ordered cellular structure of 50.8 x 50.8 x 25.4 (mm) 

overall dimensions was selected. It was made as an investment casting from AlSi9Mg eutectic alloy by the method of Rapid Prototyping 
(RP). During FEM computations using an Abaqus programme, it was assumed that the material is isotropic and exhibits the features of an 

elastic – plastic body, introducing to calculations the, listed in a table, values of the stress-strain curve obtained in tensile tests performed 

on a MTS testing machine (10T). The computations used Johnson - Cook model, which is usually sufficiently accurate when modelling the 

phenomena of penetration of an element by an object of high initial velocity. The performed numerical calculations allowed identification 

of changes in speed and energy of the penetrator during structure perforation. 
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1. Introduction 
 

Ordered cellular structures of a "sandwich" type are 

characterised by high plastic deformability while maintaining the 
stress values constant and relatively low, and, owing to this, have 

excellent properties dissipating the impact energy, which makes 

them suitable for energy absorbers in a number of constructions 

subjected to extreme conditions of  loads and ballistic impacts 

with the internal structure remaining relatively intact [1], [2], [3]. 

The phenomenon of perforating the cast structure with a steel 

penetrator can be divided into four stages as in the case of a 

projectile penetrating an armour [4]: 

 penetrator impact contact with the casting surface, 

 penetrator entering the casting at a constant speed, 

 penetrator movement inhibited by the forces of inertia and 

resistance offered by the alloy, 

 crater formed finally after arresting the penetrator movement.  
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Because of high initial speeds of the penetrator (up to 720 

m/s), considered in the examined numerical models based on the 

finite element method (FEM), the description of the occurring 

phenomena should allow for their dynamic nature and complexity 

of the, changing in time, conditions of contact between the 
penetrator surface and the casting. It is also necessary to use 

appropriate constitutive equations describing the investigated 

materials and the destruction model, considering also the thermal 

effects. Below the results of computer simulation of the 

phenomena under consideration supported with material studies 
and experiments are presented. 

 

 

2. Numerical model of the phenomena 
 

The construction of a numerical model reflecting the 

phenomena that accompany the casting perforation with a 

penetrator required the determination and adoption of 
assumptions regarding:  

 the shape and dimensions of both the cast cellular structure 

and penetrator, 

 constitutive equations for cast alloy and penetrator material, 

 model of both materials decohesion, 
 boundary and initial conditions, 

 the conditions of contact phenomena, 

 computation  algorithm, 

 the type of finite elements and the density of a FEM mesh. 

Another issue was selection of the calculation results which 
should be saved for further studies of this type to enable a 

comparison of numerical models with each other, on the one 

hand, and of the behaviour of various alloys under the influence 

of dynamic loads, on the other. Below, the assumptions adopted 

will be discussed with particular emphasis put on issues 
concerning modelling of material properties and the decohesion 

mode. 
 

2.1. Shape and dimensions of model 

components 
 

For tests, trapezoidal ordered cellular structure of 50.8 x 50.8 

x 25.4 (mm) overall dimensions (3D drawing made in 

SolidWorks) was selected. It was next made as an  investment 

casting from eutectic Al - Si alloy using a Rapid Prototyping 

technique (RP). Details of design and construction of mould and 
cast model (Fig. 1) can be found in the author’s article [5]. The 

penetrator was a φ 8 mm and 30 mm long cylinder sharp-pointed 

on the end which perforates the model structure. 

 

  
Fig. 1. Casting of a trapezoidal structure and specimen with 

annular notch of φ = 7 mm 
 

 

2.2. Constitutive model of Al - Si alloy  
 

The description of the behaviour of the cast alloy of the 
chemical composition as shown in Table 1 during the dynamic 

collision with a steel penetrator is very complex and requires 

introduction of the necessary simplifications; additionally, 

alternative models of plastic deformation can be adopted. 

 
Table 1. 

Percent content of elements in Al – Si alloy 

Al Si Cu Fe Mg Ti Zn 

89,64 8,5 1,1 0,05 0,5 0,11 0,1 

 

During calculations it was assumed that the material is 

isotropic and exhibits the features of an elastic – plastic body, 

introducing to calculations the, listed in a table, values of the 
stress-strain curve (nonlinear characteristics) obtained in the 

tensile tests conducted on a MTS testing machine (10T). 

Averaged results of static tensile tests carried out on φ = 8 mm 

diameter specimens are compared in Table 2. At this stage of 

material description, the invariability of material constants was 
assumed respective of the temperature and strain rate, adopting 

the Huber - Mises - Hencky condition of plasticity  (HMH). 
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where: 
σo – the yield stress 

 

Table 2. 

Mechanical properties of Al – Si alloy 

R0,2 Rm A5 Z E υ 

[MPa] [MPa] [%] [%] [MPa]  

282.0 335.0 4,6 6.6 70120 0.33 

 

The choice of the right constitutive model of the examined 
material is a key issue in solving the dynamic problems based on 

finite element method. Typically, two types of material models 

are used; the first is based on a law of plastic flow, the second 

takes into account the decohesion of material. Practical use of the 

majority of proposed models requires the  experimental 
determination of constants in equations describing the phenomena 

of plastic deformation and destruction of material, hence the 

selected models are often a bit simplistic, although contain a 

description of the phenomena occurring during high-speed 

deformation. Johnson - Cook model is usually sufficiently 
accurate for modelling penetration phenomena in an object of 

high initial speed. This model is used in solving the problems of 

linear thermoelasticity, plasticity, plastic flow, isotropic 

consolidation, the effects associated with changes in strain rate, 

adiabatic thermal effects and material damage. According to 
Johnson - Cook law, the reduced stress is expressed by equation  

[6]: 

 



A R C H I V E S  o f  F O U N D R Y  E N G I N E E R I N G  V o l u m e  1 1 ,  S p e c i a l  I s s u e  3 / 2 0 1 1 ,  1 7 1 - 1 7 6          173 

    m

v

vpl
npl TCBA 

















 1ln1

0

int
int0




    (2) 

where: 
A, B, C, n, m – the material variables, 

εint
pl – the intensity of plastic strain, 

εint
vpl – the equivalent plastic strain rate, 

εo
v – the reference plastic strain rate, 

TT – the dimensionless temperature 
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where: 

T – the instantaneous value of temperature, 
Ts – the melting temperature, 

T0 – the ambient temperature. 

 

During calculations, the instantaneous values of the intensity of 

plastic deformation at points of the integration of components are 
determined. It is understood that decohesion occurs when the 

damage parameter D is equal to unity. This damage parameter is 

defined by the following equation: 
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where: 

Δεint
pl – the increment in the plastic strain intensity , 

εf
pl -  the critical value of the plastic strain intensity  

 

Summing up in formula (4) takes place after each increment in 

deformation. 

The critical value of the plastic strain intensity εf
pl
 depends on 

the dimensionless strain rate εint
vpl

 / εo
v
  and on the average stress  

σm to stress intensity σint  ratio.  The average stress value is an 

arithmetic mean of normal stress components σ1, σ2, σ3, while 

stress intensity is determined by HMH hypothesis.  The value of 

εf
pl 

 is determined by the following relation: 
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where: 

D1 – D5 – the material constants determined experimentally . 

 

If the failure criterion is met,  the σm / σint quotient takes the zero 

value and keeps this value throughout the whole further analysis. 

This means that, starting with that moment, the damaged 

component does not carry the loads any longer and is removed 

from the whole structure. Phenomenological equation (5) consists 
of three members related with stress, strain rate and  temperature, 

for which the constant values D are determined in mechanical 

tests. Constants D1, D2 and D3 were determined experimentally 

during the tensile test carried out on  tensile specimens with 

annular notch of variable radius, while other values were adopted 

from Bovril’s work [7]. 

 

 

3. Material testing 
 

Mechanical tests to determine the constants D1 , D2 and D3 

were carried out in a tensile test using a φ = 14 mm specimen 
(Fig. 1) with an annular notch of φ  = 1.0, 1.5, 2.0, 3.0, 4.0 and 7.0 

mm.  

The distribution of stresses within the area of the annular 

notch made in a rod can be determined by Bridgman’s solution 

[8]. This solution interrelates the degree of the triaxiality of the 
state of stress T t, in middle part of the specimen with the 

geometry of the specimen in which the annular notch was made 

using the following relationship: 
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where: 
σm – the average stress value is an arithmetic mean of the normal 

stress components σ1,  σ2,  σ3 : 
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where: 

σint – the stress intensity determined by HMH hypothesis:  
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The degree of the triaxiality of  the state of stress T t affects the 

process of cracking of the plastic material because the spherical 

stress tensor component σm is associated with the process of the 

initiation and growth of voids [9], [10], [11]. The annular notch 
causes a significant decrease in the value of the deformation 

compared with a smooth sample, while an increase is observed in 

the force at which the rupture of the specimen occurs (Fig. 2). 
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Fig. 2. Tensile curves plotted for specimens with annular notches 

of 1- φ = 2 mm,  2 – φ = 4 mm, 3 – φ = 7 mm 
Siła – force, Odkształcenie – strain 
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The alloy decohesion mode also changes. The scanning 

photograph of the centrally formed fracture in an unnotched 

specimen shows visible areas of plastic deformation (Fig. 3d). An 

incision made in the annular notch increases the share of brittle 

fracture, the more that the annular notch has a small radius  
(Fig.3). When the radius φ is 2mm (Fig. 3a),  the fracture shows 

no longer the presence of the zones of plastic deformation in its 

central part. These differences in the type of  material decohesion 

are caused by changes in the state of stress and strain in the notch 

plane under the influence of increasing load, assumimg  different 
run when the radius of the annular notch changes. The effect of 

the spatial state of stress on decohesion mode in the Al - Si alloy 

under consideration was discussed in detail in the author’s study 

[12] 
 
Table 3.  

The triaxiality degree  T t  and the related maximum strain  εmax for  

Al –Si alloy 

 

φ [mm] 

 

εmax
* 

 

T t
** 

1.0 0.006 1.34 

1.5 0.02 1.11 

2.0 0.022 0.96 

3.0 0.026 0.79 

4.0 0.037 0.69 

7.0 0.045 0.55 

0.0 0.046 0.33 

*    -   experimental values 
**  -   numerical values 

 

a) b) 

  
c) d) 

  
Fig. 3. Photographs of  AlSi alloy fractures taken in the axis of 

specimens with annular notches of different radii φ: a - φ = 2 mm, 

b - φ = 4 mm, c - φ = 7 mm d – unnotched specimen;  500x 
 

It was assumed that the penetrator is made of cast steel, the 

mechanical properties of which, experimentally determined on 

cylindrical φ = 8 mm specimens, are summarised in Table  4. 
 
Table 4.  

Mechanical properties of cast steel 

R0,2 Rm A5 Z E υ 

[MPa] [MPa] [%] [%] [MPa]  

564.0 696.5 24,5 30,5 190000 0.33 

A non-linear elastic - plastic model, similar to that functioning in 

Al - Si alloys, was adopted, allowing for a relationship between 

the alloy effort, the degree of stress triaxiality, true strain on 

decohesion, and plastic strain rate (Table 5). 
 
Table 5.  

Triaxiality degree T t  and maximum strain εmax for cast steel 

φ [mm] εmax
* T t

** 

1.0 0.05 1.1 

0.0 0.245 0.33 

*    -   experimental values  

**  -   numerical values 

 

Johnson - Cook model implemented in Abaqus programme 

requires additionally the determination of a critical value of the 

internal energy in a unit model volume EIK. 

The critical value of internal energy EIK was determined by 

experiments during compression tests carried out on casting of a 
trapezoidal structure, recording force as a function of changes in 

the original height. The compression graph for structures of this 

type has a characteristic shape described in the reference literature 

[13]. Based on the experimentally determined set of curves, the 

total value of internal energy EIK = 232 J was calculated; it 
corresponds to the surface area under the curve ranging from zero 

up to the value obtained at an instant of the structure compaction 

(Fig. 4). A unit value of this energy falling to 1 mm
3
 of the 

structure is 8.1 J. 
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Fig. 4. Compression curve for trapezoidal cellular structures 

 

3.1. Boundary and initial conditions 
 

Table 6.  
Mass and density compared for cellular structure and Al – Si alloy 

 Mass Volume Density Relative 

density 

[g] [mm3] [g/mm3] Δ** 

Cellular 
structure 

77 28507 0,001175 0,4352 

Al-Si alloy 177* 65548 0,002700 - 

 

* - mass of cuboid of overall dimensions corresponding to the 

dimensions of cellular structure  

** - relative density of cellular structure Δ defined as a ratio 

between the density of porous material and the starting material ρs  
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4. Results 
 

The performed numerical calculations aimed at the 
determination of changes in  penetrator velocity during structure 

perforation and at the determination of the dissipation energy. 

Owing to the structure configuration, during its perforation, there 

is a difference between the penetrator tip and end speed. 

Characteristic is the initial drop in the penetrator tip speed from 
Vp = 700 m/s to 180 m/s caused by the erosion and flattening 

during impact contact with the top surface. On piercing the top 

layer, the penetrator energy decreases but the decrease is not 

strong enough to prevent the recurrent increase when the 

penetrator enters a void area in the structure. Farther elements of 
the structure slowdown the penetrator movement. The penetrator 

end, which does not undergo deformation, reduces its speed only 

slightly at the beginning to make it equal with the speed of the tip 

after piercing of the structure. Ultimately, the penetrator pierces 

and leaves the structure at a speed of Vk of 395 m/s. 
 

Table 7.  

Changes in energy ΔE and velocity ΔV upon perforation of the 

structure 

Vp Vk Vp- Vk tpr
* Ep

** Ek Ep- Ek 

[m/s] [m/s] [m/s] [ms] [J] [J] [J] 

715 395 320 0,046 1990 695 1295 

*     -  tpr – penetration time counted until structure perforation by 

the penetrator tip  
**   -  Ep –penetrator starting energy,  

*** - Ek –penetrator end energy 

 

Figures 5 and 6 show stress values obtained by numerical 
analysis according to the HMH hypothesis in the following time 

sequences of structure perforation with the penetrator. 

 

 

 

Fig. 5. HMH stresses in structure during perforation with 

penetrator; time  1 – 0,00001 s, 2 – 0,00002 s, 3 – 0,00003 s,  

4 – 0,00010 s 
 

 

Fig. 6. HMH stresses in structure during perforation with 

penetrator; time  1 – 0,00001 s, 2 – 0,00002 s, 3 – 0,00004 s,  

4 – 0,00007 s 

 
Table 8. 

The results of MES calculations: the starting and end velocity and 

the depth of penetration  

Vp Vk Vp- Vk dpr
* tpr

** 

[m/s] [m/s] [m/s] [mm] [ms] 

715 675 40 25,4 0.0375 

500 472 28 25,4 0,051 

400 375 25 25,4 0,0625 

200 125 75 25,4 0,152 

100 0 100 16,42 0,325 

50 0 50 6,08 0,2125 

25 0 25 3,41 0,175 
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