PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Design of a solar powered reverse osmosis system in Egypt

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Scarcity of fresh water, forced many countries to get their water needs, or part of it, by means of saline water desalination. Reverse osmosis (RO) systems are useful tools in this concern. In case the grid electricity is not available or costly, photovoltaic (PV) power is necessary to derive RO systems. The present paper is concerned with providing a methodology for complete sizing and design of a photovoltaic reverse osmosis (PVRO) system in Egypt. Egypt has very favorable solar energy. A computer program was constructed to solve the mathematical equations of the model to get the numerical values. The program is capable of calculating the solar irradiation for any city in Egypt. Calculations and selection of the RO system with all connected pumps, the peak PV power needed, and the actual PV area were performed for different water demands ranging from 1-100 m3/day, and various water total dissolved solids (TDSs) of 5000, 15000, and 30000 mg/l. The cost of the complete PVRO system was also determined. The concern of the paper is related to water desalination and solar energy, which are responsible for our existence. The work also aims toward sustainable and clean environment via utilizing solar energy.
Rocznik
Strony
125--140
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr.
Twórcy
  • Mechanical Engineering Department, Al-Azhar University, Cairo, Egypt
  • Mechanical Engineering Department, Al-Azhar University, Cairo, Egypt
Bibliografia
  • 1. Norouzi S. (2015). Suggested strategies in water treatment by using situ pressure in reverse osmosis, Open Journal of Geology, Vol. 5, pp. 367-373.
  • 2. Kashyout A. B.,Hassan A., Hassan G., Fath H. E., Kassem A., Elshimy H., Vepa R., Shaheed M. F. (2021). Hybrid renewable energy/hybrid desalination potentials for remote areas: selected cases studied in Egypt, RSC Adv., Vol. 11, pp. 13201-13219.
  • 3. Kummu M., Gillaume J. H. A., de Moel H., Eisner S., Florke M., |Porkka M., Sebat S., Veldkamp T. I. E., Ward P. J. (2016). The world’s road to water scarcity and pathway towards sustainability, Scientific Reports, Vol. 6, Article No. 38495.
  • 4. Ziolkoska J. R. (2016). Desalination leaders in the global market- current trends and future prospectives, Water Science and Technology: water Supply, Vol. 16, No. 3, pp. 563-578.
  • 5. Ahmadi E., Mc Lellan B., Mohammadi-Invatloo B., Tezuku T. (2020). The role of renewable energy sources in desalination as a potential fresh-water source: an updated review, Sustainability, MDPI, Vol.12, No. 5233, pp. 5233, 1-31.
  • 6. Pangarkar B. L., Sane M. G., Guddad M. (2011). Reverse osmosis and membrane desalination for desalination of ground water: A review, Scholarly Research Network, ISRN Material Science, (Article ID 523124).
  • 7. Lee K. P., Arnot T. C., Mattia D. (2011). A review of reverse osmosis membrane materials for desalination development to date and future potential, J. of Membrane Science, Vol., 370, pp. 1-22.
  • 8. Schunke A. J., Herrero G. A., Padhye L., Berry T. (2020). Energy recovery in SWRO desalination: current status and new possibilities, Frontiers in Sustainable Cities, Mini Review, pp. 1-7 .
  • 9. Bilton A. M., Kelly L. C., Dubowsky S. (2011). Photovoltaic reverse osmosis - feasibility and a pathway to develop technology, Desalination and Water Treatment, Vol. 31, No. 1-3, pp. 24-34.
  • 10. Kondili E. 2012). Special wind power applications, Comprehensive Renewable Energy, Vol. 2, pp. 725-746.
  • 11. Davenport D. M., Deshmukh A., Werber J. R., Elimelech M. (2018). High-pressure reverse osmosis energy-efficient hypersaline, and research needs, Environ. Sci. Technol. Lett., Vol. 5, pp. 467-475.
  • 12. Greenlee L. F., Lawler D. F., Freeman B. D., Marrot B., Moulin P. (2009). Reverse osmosis desalination: Water sources, technology, and today's challenges. Water Research, Vol. 43, No. 9, pp. 2317-2348.
  • 13. Esmaellion F. (2020). Hybrid renewable energy systems for desalination, Applied Water Science, Vol. 10, No. 84, pp. 1-47.
  • 14. Al-Jabr A. H., Ben-Mansour R. (2018). Optimum selection of renewable energy powered desalination systems, Proceedings. MDPI, Vol. 2, No. 412.
  • 15. Banat F., Qiblawey H., Al-Nasser Q. (2012). Design and operation of small-scale photovoltaic-derive reverse osmosis (PV-RO) desalination plant for water supply in rural areas, Computational Water, Energy, and Environmental Engineering, Vol. 1, pp. 31-36.
  • 16. Fitri S. P., Boheramsyah A., Santoo A., Nugraho T. F., Iswantoro A., Ikhwani H., Ditya D. J. (2021). Design of reverse osmosis desalination plant at remote coastal area’, IOP Conference Series: Earth and Environmental Sciences, Vol. 698.
  • 17. Mohamed E. Sh., Papadakis G., Mathioulakis E., Belessiotis V. (2008). A direct coupled photovoltaic seawater reverse osmosis desalination system toward battery-based systems – a technical and economical experimental comparative study, Desalination, Vol. 221, No. 1-3, pp. 17-22.
  • 18. Duffie J. A., Beckman W. A. (2013). Solar Engineering of Thermal Processes, 4th Edition, John Wiley & Sons, New Jersey.
  • 19. DUPONT, Water resources, film TecTM reverse osmosis membranes technical manual, Version 7, Feb. 2021: Available at www.dupontcom/water/cotact-us.pdf (viewed May 2021).
  • 20. PRODES, Desalination technologies (II), Centre for Renewable Energy Sources and Savings: Available at www.prodes-project.org pdf. (viewed May 2021).
  • 21. Huang B., Pu K., Wu P., Wu D., Lang J. (2020). Design, selection and application of energy recovery device in seawater desalination: A review. Energies, MDPI, Vol. 13, No. 4150.
  • 22. Khatib T., Mohamed A., Sopian K. (2012). A software tool for optimal sizing of photovoltaic systems in Malaysia, Modeling and Simulation in Engineering, (Article ID 969248). 11 pages.
  • 23. Al-Shamami A. N., Hj Othman M. Y., Mat S., Raslan M. H., Abed A. M., Sopian K. (2015). Design & sizing of stand-alone solar power systems a house Iraq, Recent Advances in Renewable Energy Sources (Ed. Aida Bulucea), Proceedings of the 9th International Conference on Renewable Energy Sources, Kuala Lumpur, Malaysia, April, 2015.
  • 24. Meteonorm Software: Available at http://www.meteonorm.com/en/features/features.Pdf. (Viewed May 2021).
  • 25. Ibrahim S. M. A., Elghitany H. H., Shabak A. G. (2020). Comprehensive design tool for sizing solar water pumping system in Egypt, Applied Solar Energy, Vol. 56. No. 1.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-984a1dec-d249-494d-b168-68afab957595
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.