PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimal maintenance strategy on medical instruments used for haemodialysis process

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Optymalna strategia konserwacji urządzeń medycznych wykorzystywanych w procesie hemodializy
Języki publikacji
EN
Abstrakty
EN
Haemodialysis machines are one of the important medical equipment which is used to treat renal failures and minimum downtimes are thus essential. Uninterrupted and constant use of these machines in hospitals worldwide makes them vulnerable to failures if not maintained properly. Consequently, the maintenance cost for dialysis machine is high. A method to implement a cost effective maintenance strategy is demonstrated in this work. Root Cause Based Maintenance (RCBM) strategy is employed at the component level to optimize the Reliability Based Maintenance schedules derived from the existing maintenance and failure data. In order to minimize the average cost of maintenance for Haemodialysis machines and ensure their high operational availability, a Cost-Model is derived, and Genetic Algorithm is employed for optimization in this work. The application of RCBM strategy results in cost saving of about 60% of the cost incurred using current maintenance scheme. Statistical and optimization calculations are performed using Reliasoft’s Weibull++ and MATLAB tools respectively.
PL
Aparaty do hemodializy to ważne urządzenia medyczne wykorzystywane w leczeniu niewydolności nerek, dlatego ich przestoje muszą być jak najkrótsze. Ciągłe, nieprzerwane korzystanie z tych urządzeń w szpitalach na całym świecie sprawia, że, w przypadku braku właściwej konserwacji, są one podatne na awarie. W związku z tym koszty konserwacji aparatów do dializy są wysokie. W prezentowanej pracy przedstawiono metodę wdrażania ekonomicznej strategii konserwacji. Wykorzystano strategię konserwacji opartą na analizie przyczyn źródłowych uszkodzenia (RCBM). Zastosowano ją na poziomie części składowych w celu optymalizacji harmonogramów konserwacji opartej na niezawodności (RBM) tworzonych na podstawie istniejących danych dotyczących konserwacji i uszkodzeń. Aby móc zminimalizować średni koszt konserwacji aparatów do hemodializy i zapewnić ich wysoką gotowość operacyjną, opracowano model kosztowy, a optymalizację przeprowadzono za pomocą algorytmu genetycznego. Zastosowanie strategii RCBM daje około 60-procentową oszczędność kosztów, jakie ponosi się przy użyciu obecnie wykorzystywanego programu konserwacji. Obliczenia statystyczne i optymalizacyjne wykonano, odpowiednio, przy użyciu oprogramowania Weibull ++ i MATLAB firmy Reliasoft.
Rocznik
Strony
318--328
Opis fizyczny
Bibliogr. 41 poz., rys., tab.
Twórcy
  • Center for Reliability Sciences & Technologies, Chang Gung University No. 259, Wen-Hua 1st Road, Guishan District, Taoyuan City, Taiwan, ROC 33302
  • Department of Electronic Engineering, Chang Gung University No. 259, Wen-Hua 1st Road, Guishan District, Taoyuan City, Taiwan, ROC 33302
autor
  • Center for Reliability Sciences & Technologies, Chang Gung University No. 259, Wen-Hua 1st Road, Guishan District, Taoyuan City, Taiwan, ROC 33302
autor
  • Center for Reliability Sciences & Technologies, Chang Gung University Department of Electronic Engineering, Chang Gung University No. 259, Wen-Hua 1st Road, Guishan District, Taoyuan City, Taiwan, ROC 33302
autor
  • Center for Reliability Sciences & Technologies, Chang Gung University Department of Electronic Engineering, Chang Gung University No. 259, Wen-Hua 1st Road, Guishan District, Taoyuan City, Taiwan, ROC 33302
  • Center for Reliability Sciences & Technologies, Chang Gung University No. 259, Wen-Hua 1st Road, Guishan District, Taoyuan City, Taiwan, ROC 33302
autor
  • Center for Reliability Sciences & Technologies, Chang Gung University Department of Electronic Engineering, Chang Gung University No. 259, Wen-Hua 1st Road, Guishan District, Taoyuan City, Taiwan, ROC 33302
Bibliografia
  • 1. Anderson D J, Brown T J, Carter C M. System of systems operational availability modeling. In NDIA SE Conference. San Diego, CA, USA, 2012; 1–20.
  • 2. Andrzejczak K, Młyńczak M, Selech J. Poisson-distributed failures in the predicting of the cost of corrective maintenance. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2018; 20 (4): 602–609, https://doi.org/10.17531/ein.2018.4.11.
  • 3. Azar A T, Wahba K, Rafi M, Abdalla S C. System dynamics highlights the effect of maintenance on hemodialysis performance. In 25th International Conference of the System Dynamics Society, Boston, Massachusetts USA 2007.
  • 4. Ballesteros A, Sanda R, Maqua M, Stephan J-L. Maintenance related events in nuclear power stations. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2017; 19 (1): 26–30, https://doi.org/10.17531/ein.2017.1.4.
  • 5. Barlow R, Hunter L. Optimum preventive maintenance policies. Operations Research 1960; 8:90–100, https://doi.org/10.1287/opre.8.1.90.
  • 6. Consilvio A, Di Febbraro A, Meo R, Sacco N. Risk-based optimal scheduling of maintenance activities in a railway network. EURO Journal on Transportation and Logistics 2018; 1–31, https://doi.org/10.1007/s13676-018-0117-z.
  • 7. Daugirdas J T. Second generation logarithmic estimates of single-pool variable volume Kt/V: An analysis of error. Journal of the American Society of Nephrology 1993; 4: 1205–1213.
  • 8. Dieulle L, Berenguer C, Grall A, Roussignol M. Continuous time predictive maintenance scheduling for a deteriorating system. In: Annual Reliability and Maintainability Symposium. Proceedings. International Symposium on Product Quality and Integrity (Cat. No.01CH37179) IEEE 2001; 150–155, https://doi.org/10.1109/RAMS.2001.902458.
  • 9. Duc L M, Tan C M, Luo M, Leng I C H. Maintenance scheduling of plasma etching chamber in wafer fabrication for high-yield etching process. IEEE Transactions on Semiconductor Manufacturing 2014; 27: 204–211, https://doi.org/10.1109/TSM.2014.2304461.
  • 10. European Best Practice Guidelines Expert Group on Hemodialysis. European Renal Association Section II. Haemodialysis adequacy. Nephrology Dialysis Transplantation 17 Suppl 2002; 7: 16–31.
  • 11. Fresenius 4008E/4008B/4008H/4008S. Hemodialysis machine technical manual 2003. http://darman.umsha.ac.ir/uploads/15_2154_82_fresenius_4008_hemodialysis.pdf. Accessed 19 Nov 2018
  • 12. Hadjila T, Ahmed A S. Estimation and simulation of conditional hazard function in the quasi-associated framework when the observations are linked via a functional single-index structure. Communications in Statistics - Theory and Methods 2018; 47: 816–838, https://doi.org/10.1080/03610926.2016.1213294.
  • 13. Hemodialysis Adequacy 2006 Work Group. Clinical practice guidelines for hemodialysis adequacy, Update. American Journal of Kidney Diseases 2006; 48: S2–S90, https://doi.org/10.1053/j.ajkd.2006.03.051.
  • 14. Holland J H. Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence. Oxford: U Michigan Press, 1975.
  • 15. Hong H P. Application of the stochastic process to pitting corrosion. Corrosion 1999; 55: 10–16, https://doi.org/10.5006/1.3283958.
  • 16. Huang CY, Lyu M R, Kuo S Y. A unified scheme of some nonhomogenous poisson process models for software reliability estimation. IEEE Transactions on Software Engineering 2003; 29: 261–269, https://doi.org/10.1109/TSE.2003.1183936.
  • 17. Jaśkowski P. Methodology for enhancing reliability of predictive project schedules in construction. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2015; 17 (3): 470–479, https://doi.org/10.17531/ein.2015.3.20.
  • 18. Jonsson P. Safety and biological aspects of present techniques of haemodialysis. Umea, Sweden, 2006.
  • 19. Khalaf AB, Hamam Y, Alayli Y, Djouani K. The effect of maintenance on the survival of medical equipment. Journal of Engineering, Design and Technology 2013;11: 142–57, https://doi.org/10.1108/JEDT-06-2011-0033.
  • 20. Khan S, Asjad M, Ahmad A. Review of modern optimization techniques. International Journal of Engineering Research & Technology 2015; 4: 984–988, https://doi.org/10.17577/IJERTV4IS041129.
  • 21. Legát V, Mošna F, Aleš Z, Jurča V. Preventive maintenance models – higher operational reliability. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2017; 19 (1): 134–141, https://doi.org/10.17531/ein.2017.1.19.
  • 22. Lin C C, Tseng H Y. A neural network application for reliability modelling and condition-based predictive maintenance. International Journal of Advanced Manufacturing Technology 2005; 25: 174–179, https://doi.org/10.1007/s00170-003-1835-3.
  • 23. Loganathan M K, Gandhi O P., Maintenance cost minimization of manufacturing systems using PSO under reliability constraint, International Journal of System Assurance Engineering and Management 2016; 7: 47-61, https://doi.org/10.1007/s13198-015-0374-2.
  • 24. Mahfoud H, ElBarkany A, ElBiyaali A. Preventive Maintenance Optimization in Healthcare Domain: Status of Research and Perspective. Journal of Quality and Reliability Engineering 2016; 2016: 1–10, https://doi.org/10.1155/2016/5314312.
  • 25. Mazidi P, Sanz Bobi M A, Shayesteh E, Hilber P. Impact of health indicators on maintenance management and operation of power systems. In Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability 2017; 231: 716–731, https://doi.org/10.1177/1748006X17731901.
  • 26. Mekki S, Wahed A, Wahba K K, Ouda B K. A system dynamics-based model for medical equipment maintenance procedure planning in developing countries. In Cairo International Biomedical Engineering Conference, Cairo, Egypt 2012:104–108, https://doi.org/10.1109/ CIBEC.2012.6473299.
  • 27. Mobley R K. An introduction to predictive maintenance. Oxford: Butterworth-Heinemann, 2002.
  • 28. Mohamed A A, Leemis L M, Ravindran A. Optimization techniques for system reliability: a review. Reliability Engineering & System Safety 1992; 35: 137–146, https://doi.org/10.1016/0951-8320(92)90033-H.
  • 29. Ridgway M G. Manufacturer recommended PM intervals: is it time for a change? Biomedical Instrumentation & Technology 2009; 43: 498–500, https://doi.org/10.2345/0899-8205-43.6.498.
  • 30. Ried S, Rauch S, Irmler L, Rikels L, Killi A, Papastathopoulos E, Sarailou E, Zimer H. Next generation diode lasers with enhanced brightness. In Proceedings: High-Power Diode Laser Technology XVI (SPIE) 2018; 15, https://doi.org/10.1117/12.2289464.
  • 31. Rutter C M, Yu O, Miglioretti D L. A hierarchical non-homogenous Poisson model for meta-analysis of adenoma counts. Statistics in Medicine 2007; 26: 98–109, https://doi.org/10.1002/sim.2460.
  • 32. Songran Liu, Zhe Li, A modified genetic algorithm for community detection in complex networks, In International Conference on Algorithms, Methodology, Models and Applications in Emerging Technologies (ICAMMAET), 16-18 Feb. 2017, https://doi.org/10.1109/ICAMMAET.2017.8186747.
  • 33. Statista Medical Technology Industry - Statistics & amp; Facts | Statista. https://www.statista.com/topics/1702/medical-technology-industry/.Accessed 19 Nov 2018
  • 34. Tan C M, Raghavan N. A framework to practical predictive maintenance modeling for multi-state systems. Reliability Engineering & System Safety 2008; 93:1138–1150, https://doi.org/10.1016/j.ress.2007.09.003.
  • 35. Tan C M, Raghavan N. Root cause analysis based maintenance policy. International Journal of Quality & Reliability Management 2007; 24: 203–228, https://doi.org/10.1108/02656710710722293.
  • 36. Venter G. Review of optimization techniques. In: Encyclopedia of Aerospace Engineering. Chichester, UK: John Wiley & Sons, Ltd, 2010, https://doi.org/10.1002/9780470686652.eae495.
  • 37. Wang Y. Development of predictive structural maintenance strategies for aircraft using model-based prognostics. TEL Archives 2017. https://tel.archives-ouvertes.fr/tel-01715558/. Accessed 19 Nov 2018
  • 38. Whitley D. A genetic algorithm tutorial. Statistics and Computing 1994; 4: 65–85, https://doi.org/10.1007/BF00175354.
  • 39. Why genetic algorithms is popular than other heuristic algorithms? https://www.researchgate.net/post/Why_genetic_algorithms_is_popular_than_other_heuristic_algorithms. Accessed 19 Nov 2018
  • 40. Yi Zheng, Yongsong Wei, Shaoyuan Li, Coupling Degree Clustering-Based Distributed Model Predictive Control Network Design, IEEE Transactions on Automation Science and Engineering 2018; 15(4): 1749–1758, https://doi.org/10.1109/TASE.2017.2780444.
  • 41. Zhou X, Xi L, Lee J. Reliability-centered predictive maintenance scheduling for a continuously monitored system subject to degradation. Reliability Engineering & System Safety 2007; 92: 530–534, https://doi.org/10.1016/j.ress.2006.01.006.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-98384324-7675-4707-b6ca-cf6c642c8433
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.