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	 1. INTRODUCTION

Let Na and Nb be two networks with same incidence 
matrix. There is a one one correspondence between their 
vertices and elements. va (vb) be the vector of voltages 
of all elements of Na (Nb). ia and ib be their current vec-
tors. Let voltage and current directions be same in all 
elements. Then Tellegen’s theorem [1,2,3] states that

vTaia  =  0                                 (1)

vTbib  =  0                                 (2)

vTaib  =  0                                 (3)

vTbia  =  0                                 (4)

They can be combined into a single equation  vTi = 0 
where v and i refer to the same directed graph. But they 
may or may not belong to same network [1]. Penfield 
et al [2] studied this theorem extensively and suggest-
ed many applications in electrical networks. It is well 
known that any two of Kirchhoff’s laws and Tellegen’s 
theorem imply the other. More precisely the following 
statements are widely accepted [1,2,4]:
i. 	 Tellegen’s theorem is a consequence of Kirchhoff’s   

laws.
ii. 	 If, for all v satisfying KVL, vTi  = 0, then i satisfies 

KCL.
iii. 	If, for all i  satisfying KCL, vTi  = 0, then v satis-

fies KVL.
Recently Willems [4] studied these statements for ac-

tive and reactive components of currents and voltages of 
power networks. It is the purpose of this paper to clarify 
an important aspect of statements (ii) and (iii). v and i in 
these statements refer to the same graph. This is enough 
for statement (i). But this is not enough for statements 
(ii) and (iii). Following the experience of Tellegen’s the-
orem one should not take v and i from same as well as 
different networks. Similarly one should not think that 
it is arbitrary or immaterial. They must be taken from 
different networks i.e. only equations (3) and (4) must 
be used. Equations (1) and (2) should not be used. Oth-
erwise the conclusions of the statements will not be true 
except for pathological cases. This aspect is discussed 
in Section II. These statements and their proofs are re-
phrased to reflect this change. This is done in Section 
III.

2. ANALYSIS OF EXISTING RESULTS

First let us derive KCL from KVL and Tellegen’s 
equation. Theorem 1 given below deals with this.

Theorem 1 [1]: Let v (i) be the vector of voltages 
(currents) of all edges of a directed graph G. Let vTi = 0 
for all v satisfying KVL. Then i satisfies KCL.

The statement of the theorem is silent on the networks 
from which v and i are taken. The proof refers to the 
graph only. It does not refer to any network and so one 
tends to think that it is immaterial. But this is not true 
from a practical point of view. It is important to under-
stand that v and i must belong to different networks to 
make this theorem meaningful. The following example 
highlights this and other problems that arise if v and i 
belong to the same network.

Example 1: Consider the simple network shown in 
Fig. 1. We will assume that KVL and Tellegen’s equa-
tion hold in this network and examine whether KCL is 
satisfied or not under different conditions.
i. 	 v1 = 5, i1 = –4, v2 = 2, i2 = 7, v3 = 3 and i3 = 2 

satisfy KVL (v1 = v2 + v3), component equations  
(v1 = 5, v2 = 2/7 i2, v3 = 3/2 i3) and the Tellegen’s 
equation (v1i1 + v2i2 + v3i3 = 0). It is clear that 
the currents do not satisfy KCL. But Th. 1 is not 
violated because we considered only one set of 
values of voltages satisfying KVL whereas the 
theorem requires us to consider all v. Now consider 
a slightly different situation. Let i1 = –4, i2 = 7 and 
i3 = 2. KCL is violated. Tellegen’s equation gives 
–4v1 + 7v2 + 2v3 = 0. Using KVL we get  
3v2 – 2v3 = 0. This is an additional constraint 
on voltages. It does not allow us to choose all v 
satisfying KVL. Hence Th. 1 is not applicable. 
On the other hand take i1 = –2, i2 = 2 and i3 = 2. 
These currents satisfy KCL. Tellegen’s equation 
gives –2v1 + 2v2 + 2v3 = 0 which is same as KVL. 
Therefore there is no additional constraint on volt-
ages and Th. 1 is applicable.

ii. 	 Take v1 = E where E is any arbitrary value. Then  
v3 = E – 2/7 i2 = 3/2 i3 from KVL and component 
equations. This gives

i3 = 2/21 (7E – 2i2)                        (5) 

	 From vTi = 0, Ei1 + 2/7 2
2i  + 3/2 2

3i  = 0. Substitute 
for i3 from equation (5) and simplify. We get
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Equations (5) and (6) do not imply the KCLs i2 = i3 
and i1 + i2 = 0. As E is varied, v1, v2 and v3 can take on 
different values satisfying KVL. In spite of that Th. 1  
is not violated because the voltages have to satisfy  
component equations also in addition to KVL.  
v1 = 5, i1 = –4, v2 = 2, i2 = 4, v3 = 3 and i3 = 4 sat-
isfy KVL and vTi = 0 but not component equations, i.e. 
component equations do not allow voltages to take on 
all possible values satisfying KVL. But Th. 1 does not 
allow us to constrain voltages by component equations. 
Hence the theorem is not useful for practical circuits if 
v and i are taken from the same network intentionally 
or unintentionally. I.e., the theorem cannot be silent on 
this.
iii.	 Let all components in the network of Fig. 1 be ideal 

voltage sources. Let v1 = E1, v2 = E2, v3 = E3 
where E1, E2 and E3 are arbitrary values. Then using 
KVL vTi = 0 gives E2(i1 + i2) + E3(i1 + i3) = 0. Since 
E2 and E3 are arbitrary, i1 + i2 = 0 and i1 + i3 = 0.  
I.e., KCLs are true. In this case component equa-
tions do not constrain voltages and hence Th. 1 is 
true. Thus Th.1 is not true except for pathological 
networks if v and i are from the same network. 
Note that there is no way to compute these currents 
even though they satisfy KCL.

iv.	 Proof of Th.1 and later Th.3 select node voltages 
arbitrarily to prove KCL. Let us now look at this 
aspect. Choose node III as reference node.  
Let  vnI = k and vnII = 0 where k is any real num-
ber. Then v1 = k, v2 = k and v3 = 0. i2 = 7/2 k and  
i3 = 0 from component equations. vTi = 0 gives  
i1 = – 7/2 k. Thus KCL is satisfied at node I for all k 
and the theorem is true. But this is only for specific 
set of values of currents whereas we want KCL for 
all values. Thus if we arbitrarily select node volt-
ages, we get KCL. Further, note that KCL is not 
satisfied at node II.

Next consider the problem of deriving KVL from 
KCL and  Tellegen’s equation. Theorem 2 given below 
deals with this.

Theorem 2 [1]: Let v(i) be the vector of voltages 
(currents) of all edges of a directed graph G. Let vTi = 0 
for all i satisfying KCL. Then v satisfies KVL.

As in Th. 1 the statement of this theorem is also si-
lent on the networks from which v and i are taken. The 
proof refers to the graph only. Consequently this theo-
rem also has problems similar to those cited above. Here 
also v and i must belong to different networks to make 
this theorem meaningful. The following example illus-
trates the problems that arise if v and i belong to the 
same network.

Example 2: Consider the network shown in Fig. 2. 
We will assume that KCL and Tellegen’s equation hold 
for this network and examine whether KVL is satisfied 
or not under different conditions.
i.	 J = 4, v1 = 5/6, v2 = 1, i2 = 2, v3 = 2/3, i3 = 2 satisfy 

the KCL equation (i1 + i2 + i3 = 0), component 
equations (J = 4, i2 = 2v2 and i3 = 3v3) and  
the Tellegen’s equation (v1i1 + v2i2 + v3i3 = 0).  
But the voltages do not satisfy KVL. Th. 2 is 
not violated because we have not considered all 
possible values of currents satisfying KCL. Next 
consider v1 = 5/6, v2 = 1, v3 = 2/3. Voltages do not 
satisfy KVL. Tellegen’s equation gives  
5/6 i1 + i2 + 2/3 i3 = 0. This is an additional constraint 
on currents. This does not allow us to take all i sat-
isfying KCL. Therefore Th. 2 is not applicable. On the 
other hand take v1 = 1, v2 = 1, v3 = 1. These voltages 
satisfy KVL and the Tellegen’s equation is same as 
KCL. Therefore there is no additional constraint on 
currents and Th. 2 is applicable.

ii.	 Take i1 = –J where J is any arbitrary value. Using 
KCL i3 = J – i2 and i3 = 3v3 we get 

3 2
1v = (J 2v )
3

  −
                             

(7)

T
1

2 2Jv + 2v +3v
2 3

=−v i                   gives

2
1 2

2 1Jv + 2v + (J 2v ) 0
2 3

− − =
                

 (8)

	 Equations (7) and (8) do not imply the KVL equa-
tions v1 = v2 = v3. Since J is arbitrary the currents 
can take on many values satisfying KCL. But Th. 2 
is not violated because currents cannot take on all 
possible values because of component equations. 
Thus Th. 2 does not allow the component equations 
to constrain currents. Hence this theorem cannot 
be applied to practical networks if v and i are taken 
from the same network intentionally or unintention-
ally. I.e., the theorem cannot be silent on this.

iii.	 Let all components in the network of Fig. 2 be ideal 
current sources. Let i1 = J1, i2 = J2, i3 = J3 where 
J1, J2 and J3 are arbitrary values. Then using KCL 
vTi = 0 gives J2(–v1 + v2) + J3(–v1 + v3) = 0. Since 
J2 and J3 are arbitrary, v1 = v2 and v1 = v3.  
I.e., KVLs are true. In this case component equa-
tions do not constrain currents and hence Th. 2 is 
true. Thus Th. 2 is true if all elements are ideal cur-

Fig. 1. An example network.
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rent sources if v and i are from the same network. 
But these networks have no practical value. Note 
that there is no way to compute these voltages 
although they satisfy KVL.

iv. 	 Proof of Th. 2 and later Th. 5 select currents 
arbitrarily to prove KVL. Let us now look at this 
aspect. Choose i1 = –k and i3 = 0 where k is any 
real number. Then i2 = k from KCL. v2 = k/2 and 
v3 = 0 from component equations. vTi = 0 gives  
v1 = k/2. Therefore v1 and v2 satisfy KVL for all k. 
I.e., Th. 2 is satisfied for v1 and v2. But this is only 
for specific set of values whereas we want KVL 
for all values. Thus if we arbitrarily choose currents 
we get KVL. But it is limited to specific values only. 
Further, note that KVL is not satisfied for v2 and v3.

 3. MODIFIED THEOREMS

In this section Theorems 1 and 2 are stated and proved 
more clearly so that they are realistic. Let G be the di-
rected graph of the given network N. Let Ga and Gb be 
two identical copies of G. They may be derived from 
two identical copies of N. We will rewrite these theo-
rems and their proofs using Ga and Gb. va (vb) are the 
vectors of voltages of all edges of Ga (Gb). ia and ib are 
their current vectors. Since each network has one graph 
only, it is clear that Ga and Gb refer to two physically 
different networks.

Theorem 3: Let vTbia = 0 for all vb satisfying KVL. 
Then ia satisfies KCL.

Proof: Consider the node transformation vb = ATvnb. 
It follows from this that taking all vb satisfying KVL in 
Gb, implies taking all values of vnb without any con-
straints. From Tellegen’s equation we have 

vTbia = vTnb Aia = 0                      (9)

Since vnb and ia belong to different graphs (networks), 
choosing vnb has no effect on ia.	
Taking vnb1 = 1, vnb2 = vnb3 = … = 0 we get KCL at 
node I for all ia from equation (9). Similarly we get 
KCLs at other nodes also. This proves the theorem.

Corollary 4: Let KVL and Tellegen’s equations be 
universally true (i.e., KVL is true for all networks and 
Tellegen’s equations hold for all pairs of networks hav-

ing same graph) then KCL is also universally true.
Proof: Let N be any network to which we want to 

prove KCL. Let G be its graph. Let Ga and Gb be two 
copies of G. Applying Th. 3 KCL is true for N. But N is 
arbitrary. Hence KCL is true for all networks. b 

Example 3: Let us now look at the observations of 
Example 1 using this knowledge. Na is the network giv-
en in Fig.1. Take another copy of this network and call 
it Nb.
i.	 Let ia1 = –4, ia2 = 7 and ia3 = 2. KCL is violated in Na. 

Tellegen’s equation gives –4vb1 + 7vb2 + 2vb3 = 0. Using 
KVL we get 3vb2 – 2vb3 = 0. This is an additional 
constraint on voltages. It does not allow us to 
choose all v satisfying KVL in Nb. Hence Th. 3 is 
not applicable. If we take ia1 = –4, ia2 = 2 and ia3 = 2 
KCL is satisfied. Tellegen’s equation gives  
–4vb1 + 2vb2 + 2vb3 = 0. This satisfies KVL and 
hence this is not an additional constraint. Hence  
Th. 3 is applicable.

ii.	 Since choosing voltages in Nb (Gb) does not affect 
currents in Na (Ga) the problem in observation (ii) 
of Example 1 does not arise now.

iii.	 Even if all the elements are ideal voltage sources, 
Th. 3 is satisfied. This can be easily verified. I.e., 
Th.1 can afford to be silent on the networks of v 
and i for such networks.

iv.	 Take node III as the reference node in Nb. Take 
vnbI = 1 and vnbII = 0. Then vb1 = vb2 = 1 and  
vb3 = 0. vTbia = (1)ia1 + (1)ia2 + (0)ia3 = 0. This 
gives KCL at node I of Na for all possible currents. 
This does not constrain KCL at node II. That has to 
be determined separately. We get KCL at node II by 
taking  vnbI =  0 and vnbII  = 1 whereas KCL is not 
satisfied at node II in observation (iv) of Example 1.

Thus the problems of Example 1 do not exist 
anymore.

Theorem 5: Let vTaib = 0 for all ib satisfying KCL. 
Then va satisfies KVL.

Proof: Consider the mesh transformation ib = BTimb 
where imb is the vector of all independent mesh currents 
in Gb (In general imb is the vector of all link currents). It 
follows from this equation that choosing all ib in Gb sat-
isfying KCL implies choosing all values of imb without 
any constraints. From Tellegen’s equation we have

vTaib = (Bva)Timb  = 0                   (10)

Since im and va belong to different graphs (net-
works), choosing imb has no effect on va. Taking  
imb1 = 1, imb2 = imb3 = … = 0 we get KVL for the first 
loop from equation (10) for all va. Similarly we get 
KVLs for other loops also. This proves the theorem.

Corollary 6: Let KCL and Tellegen’s equations be 
universally true (i.e., KCL is true for all networks and 
Tellegen’s equations hold for all pairs of networks hav-
ing same graph) then KVL is also universally true.

Proof: Let N be any network to which we want to 
prove KVL. Let G be its graph. Let Ga and Gb be two 
copies of G. Applying Th. 5 KVL is true for N. But N is 
arbitrary. Hence KVL is true for all networks.

Fig. 2. An example network.
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Example 4: Let us now look at the observations of 
Example 2 using this knowledge. Na is the network giv-
en in Fig. 2. Take another copy of this network and call 
it Nb.
i.	 Consider va1 = 5/6, va2 = 1, va3 = 2/3. Voltages do 

not satisfy KVL in Na. Tellegen’s equation gives  
5/6 ib1 + ib2+ 2/3 ib3 = 0. This is an additional con-
straint on currents. This does not allow us to take 
all ib satisfying KCL in Nb. Therefore Th. 5 is not 
applicable. Now take va1 = 1, va2 = 1, va3 = 1. 
Voltages satisfy KVL in Na. Tellegen’s equation is 
same as KCL. Thus there is no additional constraint 
on currents. Hence Th. 5 is applicable.

ii.	 Since choosing currents in Nb does not affect 
voltages in Na the problem in observation (ii) of 
Example 2 does not arise now.

iii.	 Even if all the elements are ideal current sources, 
Th. 5 is satisfied. This can be easily verified. I.e., 
Th. 2 can afford to be silent on the networks of v 
and i for such networks.

iv.	 Choose ib1 = 1 and ib3 = 0. Then ib2 = –1 from 
KCL. vTaib =   gives va1 = va2. I.e., KVL holds for 
loop 1 in Na. We get KVL va2 = va3 by taking  
ib1 = 0 and ib3 = 1 whereas KVL is not satisfied for 
this loop in observation (iv) of Example 2.

Thus the problems of Example 2 do not exist 
anymore.

Remarks:
1. 	 It is clear from the proofs of Theorems 3 and 5 that 

(i) the networks to which v and i belong cannot be 
arbitrarily decided and (ii) v and i don’t have to be 
chosen from the same network in addition to choos-
ing them from different networks.

2. 	 Tellgen’s theorem refers to one graph only whereas 
Ths. 3 and 5 refer to two graphs. It is interesting 
to note that Tellegen’s theorem can also be stated 
using two different graphs. We can state Tellegen’s 
equation as vTi = 0 where v and i refer to two 
separate but identical graphs. Equations (3) and (4) 
follow from this. When Nb is a copy of Na both of 
them have same voltages and currents. So equa-
tions (3) and (4) give equations (1) and (2). Thus 
all four Tellegen’s equations can be put as a single 
equation using two graphs also. Further this allows 
us to put all three statements mentioned in the 
Introduction in a common frame work by choosing 
v and i from different graphs always.

4.  CONCLUSIONS

It is well known that KVL (KCL) together with Tel-
legen’s equation implies KCL (KVL). It is shown here 
that voltages and currents must be taken from different 
networks to achieve this. More precisely they need two 
separate but identical graphs. We can do this even for 
Tellegen’s theorem.
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DISCUSSION

(Both the Author and the Reviewer authorized publica-
tion of their discussion)

Reviewer’s comments 1:
There are no novel ideas in the paper. Tellegen’s theo-

rem depicts only the interconnection properties of the 
circuit. It does not contain a clear physical meaning. 
Components of different vectors of voltages and cur-
rents those are sufficient to the Tellegen’s theorem but 
not always sufficient to physical equations.

Consider a directed graph G and a vector of voltages 
v = [V1,V2,…,Vn], which is sufficient to the KVL for 
G. The equation of X1*V1 + X2*V2 +…+ Xn*Vn = 0 
has innumerous solutions. If one of these solutions is the 
vector x = [X1,X2,…,X3] and if it would be implemented 
to Tellegen’s theorem, then it would be adequate to the 
theorem, but it would be adequate to the KCL only for 
special case. Willems noted this feature for the case of 
active currents in the mentioned paper. Hence Tellegen’s 
theorem is correct and does not need any remarks.

Author’s answers:
1. 	 Tellegen’s theorem does not contain a clear physi-

cal meaning and it is only about interconnection. 
I don’t agree with this view. Tellegen’s theorem 
emphasizes interconnections. But it uses voltages 
and currents which have to come from somewhere. 
Wherefrom will they come if there is no associated 
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network. There is no Tellegen’s equation if there 
are no voltages and currents. Interconnection infor-
mation is contained in the graph of the network.  
A directed graph G has edges and vertices. It has 
no voltages and currents unless the graph is derived 
from some physical network. So we cannot ignore 
the underlying network completely. Tellegen’s 
theorem is not about graphs. Tellegen’s theorem 
is about networks. This itself shows that intercon-
nection (graph) alone is not enough. Emphasizing 
interconnection is merely to highlight its generality. 
I.e, it applies to any network. This does not mean 
that there is no network at all. We cannot delink  
the theorem from networks. Emphasizing inter-
connection is only to say that any set of quantities 
satisfying KVL (call them voltages) and any set of 
quantities satisfying KCL ( call them currents) sat-
isfy Tellegen’s equation . We may be able to state 
some Tellegen’s equations using fictitious voltages 
and fictitious currents. But this does not mean that 
they are always fictitious quantities only. They 
have to be associated with some network if Telle-
gen’s theorem has to be meaningful. Thus Telle-
gen’s theorem emphasizes interconnection. But it is 
not about interconnection only. I.e., we cannot keep 
interconnection only in our minds when we talk of 
Tellegen’s theorem for real life situations.

2. 	 “Consider a directed graph G and a vector of volt-
ages v = [V1,V2,…,Vn], which is sufficient to the 
KVL for G.  
The equation of X1*V1 + X2*V2 +…+ Xn*Vn = 0 
has innumerous solutions. If one of these solutions 
is the vector x = [X1,X2,…,X3] and if it would be 
implemented to Tellegen’s theorem, then it would 
be adequate to the theorem, but it would be ad-
equate to the KCL only for special case. Willems 
noted this feature for the case of active currents in 
the mentioned paper.” 
My arguments are not inconsistent with what  
Willems said in his paper. As the reviewer pointed 
out, Willems noted the feature of active currents of 
power networks and made some interesting obser-
vations in his paper. But that is a physical network. 
It is not just interconnections only. Thus when it 
comes to reality we cannot ignore networks and 
harp only graphs.

3.	 “Hence Tellegen’s theorem is correct and does not 
need any remarks.” 
First let me clarify that my paper does not say that 
Tellegen’s theorem is wrong. My paper is not on 
Tellegen’s theorem at all. Nor it is about remarks 
on Tellegen’s theorem. It is about KVL (KCL) as 
a consequence of Tellegen’s theorem and KCL 
(KVL). So I accept Tellegen’s theorem and I have 
no remarks on Tellegen’s theorem itself. I did not 
even say that the existing statements on Kirchhoff’s 
laws from Tellegen’s theorem are inherently wrong. 
I only tried to sharpen the statements. My modi-
fied theorems are sharpened versions of existing 
theorems. This is necessary if we have to use and 
understand these statements correctly on real life 

networks. My paper makes this point amply clear. I 
believe that this paper is important even if it has no 
novel ideas because it polishes fundamentals. Since 
KVL and KCL are fundamental to all electrical 
engineers, I think that this paper should be of inter-
est to many electrical engineers and not specialists 
only. 
My paper is about KVL (KCL) from Tellegen’s 
theorem and KCL (KVL) and not Tellegen’s 
theorem. In the first place the voltages and currents 
must come from physical networks if these state-
ments have to be meaningful. Secondly these state-
ments are not true even for fictitious voltages and 
fictitious currents unless we assume that they are 
unrelated. The existing proofs don’t say this. But 
they assume this unknowingly. Tellegen’s theorem 
does not require this whereas KVL / KCL from 
Tellegen’s theorem requires this extra constraint. 
Component equations in networks do not allow 
voltages and currents to be unrelated. The whole 
paper is about this. This constraint is satisfied by 
taking them from two different networks/graphs.  
If you insist on interconnection only, I will also 
state in terms of interconnection only. I will say 
two different graphs instead of networks. In fact 
I did this in the paper. But in reality they have to 
come from two different networks even if they are 
identical. If you try to prove these statements your-
self or read my proofs carefully, you will realize the 
importance of what I am saying. I am only trying to 
make the fundamentals more precise.

Reviewer’s comments 2:
On the first remark: the citation from the book “Lin-

ear and nonlinear circuits” you refer to is “Clearly, Tel-
legen’s theorem depict only the interconnection proper-
ties of the circuit or the topology of digraph”. I am fully 
agreed with that statement as there is no point in limit-
ing the theorem with particular physical phenomenon.  
I agree with you that in order to use Tellegen’s theorem 
the correspondence of voltages and currents to compo-
nent equations must be examined.

I do not contradistinguish your paper to professor’s 
Williams paper. The example given in the previous re-
view shows that for known set of voltages the given 
equation has infinite number of solutions. Some of them 
match with Kirchhoff law for particular directed graph 
and only one of them has physical meaning. It is a well-
known fact and it is considered by characteristics of the 
Tellegen’s theorem related to Kirchhoff law. Professor’s 
Williams paper was mentioned only as an example. 

Your paper incorporates an important idea that two 
voltage and current vectors which meet Kirchhoff’s 
law requirements for the circuit with particular directed 
graph and therefore Tellegen’s theorem may not match 
to component equations. 

In your paper you proposed the way of specifying the 
definitions of Tellegen’s theorem`s conclusions related 
to Kirchhoff law in order to eliminate inaccuracy. How-
ever nor theorem itself neither conclusions from it do 
confirm that voltage and current vectors should match 
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with component equations. Only the matching of Kirch-
hoff law with directed graph of particular circuit is stat-
ed. Therefore there is no need to additionally logically 
limit conclusions of the theorem. This is the idea that I 
tried to explain in my previous review. Purely the con-
clusions of the theorem were meant. I apologize for my 
incorrect wording. 

I see no reason to include any additional limits to the 
definitions of the Tellegen’s theorem conclusions which 
refer to Kirchhoff’s law. However I agree with you that 
although the main idea of a paper about two vectors of 
voltage and current corresponding to Kirchhoff’s law 
for particular directed graph is not new, it could be in-
teresting for readers. Moreover I think that some of the 
readers may not be familiar enough with that topic. Your 
paper would be useful for the readers and I recommend 
it for publication in discussion section of the journal.

Author’s answers 2:
1.	 At graph level we have KVL, KCL and Tellegen’s 

equation. At network level we have KVL, KCL, 
Tellegen’s equation and component equations. I.e., 
the network has more constraints than the graph. 
Therefore, a proof given at graph level need not 
hold at network level. Chua et al proved KVL/KCL 
at graph level only. They did not examine KVL/
KCL at network level. That is why their proofs did 
not require component equations. But in reality we 
want KVL and KCL at network level and networks 
have components. Therefore, we cannot ignore 
components. We must consider the effect of com-
ponent equations on the proofs of the statements. 
However, my theorems are also on graphs only. I 
got rid of the influence of component equations by 
using two graphs. 

2.	 Chua et al. proved KVL and KCL at graph level. 
We cannot say that their statements are applicable 
to networks unless we understand the implications. 
For example, we need to know whether graph level 
statements and proofs are true at network level also 
or not. That is exactly what I did. My paper should 
be seen as an adaptation/extension/study of graph 
level statements to understand KVL and KCL at 
network level given Tellegen’s equation. This is 
important because we have interest in KVL and 
KCL at network level and not graph level.

3.	 It is clear from the above explanation that the 
various ideas present in the paper like discussion 
concerning component equations and taking two 
graphs instead of one are necessary. There are no 
unnecessary “additional limitations” in the paper.


