PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Resource Management Techniques in Cloud-Fog for IoT and Mobile Crowdsensing Environments

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The unpredictable and huge data generation nowadays by smart devices from IoT and mobile Crowd Sensing applications like (Sensors, smartphones, Wi-Fi routers) need processing power and storage. Cloud provides these capabilities to serve organizations and customers, but when using cloud appear some limitations, the most important of these limitations are Resource Allocation and Task Scheduling. The resource allocation process is a mechanism that ensures allocation virtual machine when there are multiple applications that require various resources such as CPU and I/O memory. Whereas scheduling is the process of determining the sequence in which these tasks come and depart the resources in order to maximize efficiency. In this paper we tried to highlight the most relevant difficulties that cloud computing is now facing. We presented a comprehensive review of resource allocation and scheduling techniques to overcome these limitations. Finally, the previous techniques and strategies for allocation and scheduling have been compared in a table with their drawbacks.
Słowa kluczowe
Twórcy
  • University of Kufa, Iraq; Computer Technical Engineering Department, The Islamic University, Iraq
  • Alayen University, Iraq
Bibliografia
  • [1] Bokhari, M. U., Makki, Q., & Tamandani, Y. K. (2018). A survey on cloud computing. In Big Data Analytics (pp. 149-164). Springer, Singapore. https://doi.org/10.1007/978-981-10-6620-7_16
  • [2] X. Li and L. Da Xu, “A Review of Internet of Things - Resource Allocation,” IEEE Internet Things J., vol. 8, no. 11, pp. 8657-8666, 2021,. https://doi.org/10.1109/JIOT.2020.3035542
  • [3] S. Mousavi, A. Mosavi, A. R. Várkonyi-Kóczy, and G. Fazekas, “Dynamic resource allocation in cloud computing,” Acta Polytech. Hungarica, vol. 14, no. 4, pp. 83-104, 2017, https://doi.org/10.12700/APH.14.4.2017.4.5.
  • [4] R. Geetha and V. Parthasarathy, “An advanced artificial intelligence technique for resource allocation by investigating and scheduling parallel-distributed request/response handling,” J. Ambient Intell. Humaniz. Comput., no. 0123456789, 2020, https://doi.org/10.1007/s12652-020-02334-y.
  • [5] M. F. Manzoor, A. Abid, M. S. Farooq, N. A. Nawaz, and U. Farooq, “Resource allocation techniques in cloud computing: A review and future directions,” Elektron. ir Elektrotechnika, vol. 26, no. 6, pp. 40-51, 2020, https://doi.org/10.5755/j01.eie.26.6.25865
  • [6] Burhan, M., Rehman, R., Khan, B., & Kim, B. S. (2018). IoT Elements, Layered Architectures and Security Issues: A Comprehensive Survey. Sensors, 18(9), 2796. https://doi.org/10.3390/s18092796
  • [7] The Intel IoT Platform, "Reference Architecture for IoT Infrastructure" Intel White paper, 2015.
  • [8] Mahmoud, R., Yousuf, T., Aloul, F., & Zualkernan, I. (2015, December). Internet of things (IoT) security: Current status, challenges and prospective measures. In 2015 10th International Conference for Internet Technology and Secured Transactions (ICITST) (pp. 336-341). IEEE. https://doi.org/10.1109/ICITST.2015.7412116
  • [9] Atzori, L., Iera, A., Morabito, G., & Nitti, M. (2012). The social internet of things (siot)–when social networks meet the internet of things: Concept, architecture and network characterization. Computer networks, 56(16), 3594-3608. https://doi.org/10.1016/j.comnet.2012.07.010
  • [10] Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015). Internet of things: A survey on enabling technologies, protocols, and applications. IEEE communications surveys & tutorials, 17(4), 2347-2376 https://doi.org/10.1109/COMST.2015.2444095
  • [11] Madakam, S., Ramaswamy, R., & Tripathi, S. (2015). Internet of Things (IoT): A literature review. Journal of Computer and Communications, 3(05), 164. https://doi.org/10.4236/jcc.2015.35021
  • [12] Sethi, P., & Sarangi, S. R. (2017). Internet of things: architectures, protocols, and applications. Journal of Electrical and Computer Engineering, 2017. https://doi.org/10.1155/2017/9324035
  • [13] Zhang, X., Yang, Z., Sun, W., Liu, Y., Tang, S., Xing, K., & Mao, X. (2015). Incentives for mobile crowd sensing: A survey. IEEE Communications Surveys & Tutorials, 18(1), 54-67. https://doi.org/10.1109/COMST.2015.2415528
  • [14] Capponi, A., Fiandrino, C., Kliazovich, D., Bouvry, P., & Giordano, S. (2017). A cost-effective distributed framework for data collection in cloud-based mobile crowd sensing architectures. IEEE Transactions on Sustainable Computing, 2(1), 3-16. https://doi.org/10.1109/TSUSC.2017.2666043
  • [15] Liu, J., Shen, H., Narman, H. S., Chung, W., & Lin, Z. (2018). A survey of mobile crowdsensing techniques: A critical component for the internet of things. ACM Transactions on Cyber-Physical Systems, 2(3), 1-26. https://doi.org/10.1145/3185504
  • [16] WANG,L. “ Analyzing And Evaluating Network Protocols In Iot”, thesis, Doctoral School: Computer Science, Telecommunications and Electronics of Paris, Paris, May, 2016.
  • [17] Yi, S., Hao, Z., Qin, Z., & Li, Q. (2015, November). Fog computing: Platform and applications. In 2015 Third IEEE Workshop on Hot Topics in Web Systems and Technologies (HotWeb) (pp. 73-78). IEEE. https://doi.org/10.1109/HotWeb.2015.22
  • [18] Saharan, K. P., & Kumar, A. (2015). Fog in comparison to cloud: A survey. International Journal of Computer Applications, 122(3).
  • [19] Hu, P., Dhelim, S., Ning, H., & Qiu, T. (2017). Survey on fog computing: architecture, key technologies, applications and open issues. Journal of network and computer applications, 98, 27-42. https://doi.org/10.1016/j.jnca.2017.09.002
  • [20] Delicato, F. C., Pires, P. F., & Batista, T. (2017). Resource management for Internet of Things (Vol. 16). Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-319-54247-8
  • [21] M. Ghobaei-Arani, A. Souri, and A. A. Rahmanian, “Resource Management Approaches in Fog Computing: a Comprehensive Review,” J. Grid Comput., vol. 18, no. 1, 2020, https://doi.org/10.1007/s10723-019-09491-1.
  • [22] R. Rajeshkannan and M. Aramudhan, “Comparative study of load balancing algorithms in cloud computing environment,” Indian J. Sci. Technol., vol. 9, no. 20, 2016, https://doi.org/10.17485/ijst/2016/v9i20/85866.
  • [23] S. H. H. Madni, M. S. A. Latiff, Y. Coulibaly, and S. M. Abdulhamid, “Recent advancements in resource allocation techniques for cloud computing environment: a systematic review,” Cluster Comput., vol. 20, no. 3, pp. 2489-2533, 2017, https://doi.org/10.1007/s10586-016-0684-4
  • [24] D. A. Agarwal and S. Jain, “Efficient Optimal Algorithm of Task Scheduling in Cloud Computing Environment,” Int. J. Comput. Trends Technol., vol. 9, no. 7, pp. 344-349, 2014, https://doi.org/10.14445/22312803/ijctt-v9p163.
  • [25] A. Abid, M. F. Manzoor, M. S. Farooq, U. Farooq, and M. Hussain, “Challenges and issues of resource allocation techniques in cloud computing,” KSII Trans. Internet Inf. Syst., vol. 14, no. 7, pp. 2815-2839, 2020 https://doi.org/10.3837/tiis.2020.07.005
  • [26] T. Aladwani, “Types of Task Scheduling Algorithms in Cloud Computing Environment,” Sched. Probl. - New Appl. Trends, pp. 1-12, 2020, https://doi.org/10.5772/intechopen.86873
  • [27] A. Amini Motlagh, A. Movaghar, and A. M. Rahmani, “Task scheduling mechanisms in cloud computing: A systematic review,” Int. J. Commun. Syst., vol. 33, no. 6, pp. 1-23, 2020, https://doi.org/10.1002/dac.4302
  • [28] Panda, S. K., Nanda, S. S., & Bhoi, S. K. (2022). A pair-based task scheduling algorithm for cloud computing environment. Journal of King Saud University-Computer and Information Sciences, 34(1), 1434-1445. https://doi.org/10.1016/j.jksuci.2018.10.001
  • [29] J. Zhou, S. Bin Dong, and D. Y. Tang, “Task Scheduling Algorithm in Cloud Computing Based on Invasive Tumor Growth Optimization,” Jisuanji Xuebao/Chinese J. Comput., vol. 41, no. 6, pp. 1360-1375, 2018, https://doi.org/10.11897/SP.J.1016.2018.01360
  • [30] Alhaidari, F., & Balharith, T. Z. (2021). Enhanced Round-Robin Algorithm in the Cloud Computing Environment for Optimal Task Scheduling. Computers, 10(5), 63. https://doi.org/10.3390/computers10050063
  • [31] S. Elmougy, S. Sarhan, and M. Joundy, “A novel hybrid of Shortest job first and round Robin with dynamic variable quantum time task scheduling technique,” J. Cloud Comput., vol. 6, no. 1, 2017, https://doi.org/10.1186/s13677-017-0085-0
  • [32] Jena T, Mohanty JR (2018) GA-based customer-conscious resource allocation and task scheduling in multi-cloud computing. Arab J Sci Eng 43:4115. https://doi.org/10.1007/s13369-017-2766-x
  • [33] Ni, L., Zhang, J., Jiang, C., Yan, C., Yu, K.: Resource allocation strategy in fog computing based on priced timed petri nets. IEEE Internet Things J. 4(5), 1216-1228 (2017). https://doi.org/10.1109/JIOT.2017.2709814
  • [34] J. Praveenchandar and A. Tamilarasi, “Dynamic resource allocation with optimized task scheduling and improved power management in cloud computing,” J. Ambient Intell. Humaniz. Comput., vol. 12, no. 3, pp. 4147-4159, 2021, https://doi.org/10.1007/s12652-020-01794-6
  • [35] Pandey S, Wu L, Guru SM, Buyya R (2010) A particle swarmoptimization- based heuristic for scheduling workflow applications in cloud computing environments. In: 24th IEEE international conference on advanced information networking and applications, Perth, WA, pp 400-407. https://doi.org/10.1109/AINA.2010.31
  • [36] Lakra AV, Yadav DK (2015) Multi-objective tasks scheduling algorithm for cloud computing throughput optimization. Procedia Comput Sci 48:107-113. https://doi.org/10.1016/j.procs.2015.04.158
  • [37] Li K, Xu G, Zhao G, Dong Y, Wang D (2011) Cloud task scheduling ased on load balancing ant colony optimization. In: Sixth annual chinagrid conference, Liaoning, pp 3-9. https://doi.org/10.1109/china grid.2011.17
  • [38] Mansouri N, Zade BMH, Javidi MM (2019) Hybrid task scheduling strategy for cloud computing by modified particle swarm optimization and fuzzy theory. Comput Ind Eng 130:597-633. https://doi.org/10.1016/j.cie.2019.03.006
  • [39] Muthulakshmi B, Somasundaram K (2017) A hybrid ABC-SA based optimized scheduling and resource allocation for cloud environment. Clust Comput. https://doi.org/10.1007/s10586-017-1174-z
  • [40] Jbara, Y. H. (2019, April). A new improved round robin-based scheduling algorithm-a comparative analysis. In 2019 International Conference on Computer and Information Sciences (ICCIS) (pp. 1-6). IEEE. https://doi.org/10.1109/ICCISci.2019.8716476
  • [41] Srujana, R., Roopa, Y. M., & Mohan, M. D. S. K. (2019, April). Sorted round robin algorithm. In 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI) (pp. 968-971). IEEE. https://doi.org/10.1109/ICOEI.2019.8862609
  • [42] Zhang, J., Xie, N., Zhang, X., Yue, K., Li, W., & Kumar, D. (2018). Machine learning based resource allocation of cloud computing in auction. Comput. Mater. Continua, 56(1), 123-135. https://doi.org/10.3970 /cmc.2018.03728
  • [43] Tuli, S., Gill, S. S., Xu, M., Garraghan, P., Bahsoon, R., Dustdar, S., ... & Jennings, N. R. (2022). HUNTER: AI based holistic resource management for sustainable cloud computing. Journal of Systems and Software, 184, 111124. https://doi.org/10.1016/j.jss.2021.111124
  • [44] Velasquez, K., Abreu, D. P., Curado, M., & Monteiro, E. (2017). Service placement for latency reduction in the internet of things. Annals of Telecommunications, 72(1), 105-115. https://doi.org/10.1007/s12243-016-0524-9
  • [45] Yao, H., Bai, C., Xiong, M., Zeng, D., & Fu, Z. (2017). Heterogeneous cloudlet deployment and user‐cloudlet association toward cost effective fog computing. Concurrency and Computation: Practice and Experience, 29(16), e3975. https://doi.org/10.1002/cpe.3975
  • [46] Yousefpour, A., Patil, A., Ishigaki, G., Kim, I., Wang, X., Cankaya, H. C., ... & Jue, J. P. (2018). Qos-aware dynamic fog service provisioning. arXiv preprint arXiv:1802.00800. https://doi.org/10.48550/arXiv.1802.00800
  • [47] Mahmoud, M. M., Rodrigues, J. J., Saleem, K., Al-Muhtadi, J., Kumar, N., & Korotaev, V. (2018). Towards energy-aware fog-enabled cloud of things for healthcare. Computers & Electrical Engineering, 67, 58-69. https://doi.org/10.1016/j.compeleceng.2018.02.047
  • [48] Mahmud, R., Srirama, S. N., Ramamohanarao, K., & Buyya, R. (2019). Quality of Experience (QoE)-aware placement of applications in Fog computing environments. Journal of Parallel and Distributed Computing, 132, 190-203. https://doi.org/10.1016/j.jpdc.2018.03.004
  • [49] Liu, L., Chang, Z., & Guo, X. (2018). Socially aware dynamic computation offloading scheme for fog computing system with energy harvesting devices. IEEE Internet of Things Journal, 5(3), 1869-1879. https://doi.org/10.1109/JIOT.2018.2816682
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9834d213-1395-4c48-9ba9-7ea1a9f8eab8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.