PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Techno-economic approach to solar energy systems onboard marine vehicles

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The world is facing the challenge of continuously increasing energy consumption. At the same time, the energy resources are getting scarcer. Despite a sudden significant drop of fuel prices worldwide, research activities that focus on reducing the dependence on fossil fuels as a traditional source of energy still have the preference in the field of shipping industry. The use of clean and renewable energies, such as solar energy for instance, is proposed as a method to improve the ship efficiency. Ships can get the benefits from solar energy due to the fact that most of their upper decks are always exposed to the Sun, especially in sunny water regions. The present paper discusses the effectiveness and challenges of installing solar panels for auxiliary power production on board a ship. As a case study, the research evaluates both economic and environmental benefits resulting from implementing such concept aboard a research vessel.
Rocznik
Tom
Strony
64--71
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
  • Department of Marine Engineering, Faculty of Maritime Studies, King Abdulaziz University, Jeddah, Saudi Arabia
  • Marine Engineering Technology Department Arab Academy for Science, Technology & Maritime Transport, Alexandria Egypt
Bibliografia
  • 1. Ahmad, M., & Khan, B. H., 2012. Design and evaluation of solar inverter for different power factor loads. Energy and Power Engineering, Vol. 4, No. 5, pp.324-329.
  • 2. Bhatt, P., & Verma, A., 2014. Design and cost analysis of PV System using nano solar cell. International Journal of Scientific and Research Publications, pp. 1-5.
  • 3. de Castro Nóbrega, J. C., & Rössling, A., 2012. Development of solar powered boat for maximum energy efficiency. International Conference on Renewable Energies and Power Quality (ICREPQ’12), Santiago de Compostela (Spain), 28th to 30th March, 2012.
  • 4. Hua, J., Wu, Y. H., & Jin, P. F., 2008. Prospects for renewable energy for seaborne transportation—Taiwan example. Renewable energy, Vol. 33, No. 5, pp. 1056-1063.
  • 5. Hussein, A. W., & Ahmed, M. W., 2014. Solar Energy: Solution to fuel dilemma. International Journal of Research in Engineering & Technology, Vol. 2, No. 8, pp. 99-108.
  • 6. Glykas, A., Papaioannou, G., & Perissakis, S., 2010. Application and cost–benefit analysis of solar hybrid power installation on merchant marine vessels. Ocean Engineering, Vol. 37, No. 7, pp. 592-602.
  • 7. Jacobson, M. Z., & Delucchi, M. A., 2011. Providing all global energy with wind, water, and solar power, Part I: Technologies, energy resources, quantities and areas of infrastructure, and materials. Energy Policy, Vol. 39, No. 3, pp. 1154-1169.
  • 8. Kobougias, I., Tatakis, E., & Prousalidis, J., 2013. PV Systems Installed in Marine Vessels: Technologies and Specifications, Hindawi Publishing Corporation, Advances in Power Electronics 2013, Article ID 831560, 8 pages.
  • 9. Mekhilef, S., Saidur, R., & Safari, A., 2011. A review on solar energy use in industries. Renewable and Sustainable Energy Reviews, Vol. 15, No. 4, pp. 1777-1790.
  • 10. Mahmud, K., Morsalin, S. & Khan, M. I., 2014. Design and fabrication of an automated solar boat. International Journal of Advanced Science and Technology, Vol. 64, pp. 31-42.
  • 11. Moustafa, M. M., & El-bokl, E. E., 2014. Solar energy for River Nile cruisers. Brodogradnja, Vol. 65, No. 2, pp. 6172.
  • 12. McLamb, E., 2011. Fossil Fuels vs. Renewable Energy Resources. Renewable Energy Resources: Energy’s Future Today, Ecology Global Network, last modified September 6, 2011. http://www.ecology.com/2011/09/06/fossil-fuelsvsrenewable-energy-resources/.
  • 13. Patil, A. R., Atar, K. D., Potdar, A. A., & Mudholkar, R. R., 2013. Embedded fuzzy module for battery charger control. International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, Vol. 2, No. 8.
  • 14. Paulescu, M., Paulescu, E., Gravila, P., & Badescu, V., 2012. Weather modeling and forecasting of PV systems operation. Springer Science & Business Media, ISBN 9781-4471-4649-0.
  • 15. Raj, A., 2014. Process for harvesting, storing, and using renewable energy to propel and power boats and ships, and maximize their average speed. U.S. Patent Application 14/339,649.
  • 16. Rolland, L., 2013. Ship design classification for wind and solar energy capture. The 3rd Climate Change Technology Conference (CCTC 2013), Paper Number 1569706561.
  • 17. Ren, L., Diao, Y. M., & Han, Q., 2013. Economic analysis for solar hybrid power of ocean-going fishing vessels towards low carbon. In Advanced Materials Research, Vol. 608, pp. 169-172.
  • 18. Santosa, P. I., & Utama, I. K. A. P., 2014. An investigation into hybrid catamaran fishing vessel: combination of Diesel engine, sails and solar panels. IPTEK Journal of Proceedings Series, Series 1, No. 1
  • 19. Seddiek, I. S., & Elgohary, M. M., 2014. Eco-friendly selection of ship emissions reduction strategies with emphasis on SOx and NOx emissions. International Journal of Naval Architecture and Ocean Engineering, Vol. 6, No. 3, pp.737-748.
  • 20. Seddiek, I., 2015. An overview: environmental and economic strategies for improving quality of ships exhaust gases. Trans RINA, Int J Marit Eng, Vol. 157 (Part A1), pp.53-64.
  • 21. Seddiek, I. S., Mosleh, M. A., & Banawan, A. A., 2013. Fuel saving and emissions cut through shore-side power concept for high-speed crafts at the red sea in Egypt. Journal of Marine Science and Application, Vol. 12, No. 4, pp. 463-472
  • 22. SolarGIS, 2015. New Web-Based Service Offering Solar Radiation Data and PV Simulation Tools for Europe, North Africa and Middle East. http//solargis.info, (accessed 10/05/2015).
  • 23. Sulaiman, O., Aron, H., Saharuddin, A. H., Nik, W. W., Kader, A. S. A., & Ahmad, M. F., 2011. Techno economic study of potential using solar energy as a supporting power supply for Diesel engine for landing craft. International Journal of Business and Social Sciences, Vol. 2, No. 1.
  • 24. Spagnolo, G. S., Papalillo, D., Martocchia, A., & Makary, G., 2012. Solar-electric boat. Journal of Transportation Technologies, Vol. 2, No. 2, pp.144-149.
  • 25. Soufi, A., Chermitti, A., & Bibi Triki, N., 2013. Sizing and optimization of a livestock shelters solar standalone power system. International Journal of Computer Applications, Vol. 71, No. 4, pp. 40-47.
  • 26. Wang, C., & Nehrir, M. H., 2008. Power management of a stand-alone wind/photovoltaic/fuel cell energy system. Energy Conversion, IEEE Transactions on, Vol. 23, No. 3, pp. 957-967.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-98336958-cc37-4fa3-9106-dc31e32e15a7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.