PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

The effective parameters on the behaviour of treated sands by microbial-induced calcite precipitation under undrained triaxial test

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nowadays, geotechnical specialists are focused on reinforcing soil engineering parameters using innovative and environmentally friendly methods. Microbial-Induced Calcite Precipitation is a ground improvement method for modifying soil strength, permeability, and stiffness; therefore, it can be vital to study the effective factors on the technique’s efficiency and cost reduction. This study examined how biologically treated sands subjected to undrained triaxial loading responded to simultaneous changes in cementation solution molarity, optical density (OD600), and curing time. The triaxial experiments showed that the strength increased with the rise in the mentioned parameters. While the solution molarity and optical density had the highest and lowest effect on the soil improvement process, respectively, the optical density role was considerably low when the molarity was high. Increasing the molarity of the cementation solution resulted in a 45% increase in the peak stress ratio, while the optical density and curing time were constant. On the other hand, similar behaviour of dense sand and change in the response of cemented soil from strain-hardening to strain-softening were other notable observations of this study. In addition, the peak stress ratio at low strains increased with increasing the cementation level and then decreased to close to the amount of untreated sand with increasing strain.
Rocznik
Strony
55--69
Opis fizyczny
Bibliogr. 34 poz., fot., rys., wykr.
Twórcy
  • Department of Civil Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran
  • Department of Civil Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran
  • Department of Civil Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran
Bibliografia
  • [1] R.H. Karol, Chemical grouting and soil stabilization, revised and expanded. Crc Press (2003).
  • [2] P.P. Xanthakos, L.W. Abramson, D.A. Bruce, Ground control and improvement, John Wiley & Sons (1994).
  • [3] M.P. Harkes, L.A. Van Paassen, J.L. Booster, V.S. Whiffin, M.C. van Loosdrecht, Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement. Ecological Engineering 36 (2), 112-117 (2010). DOI: https://doi.org/10.1016/j.ecoleng.2009.01.004.
  • [4] J.T. DeJong, B.M. Mortensen, B.C. Martinez, D.C. Nelson, Bio-mediated soil improvement. Ecological Engineering 36 (2), 197-210 (2010). DOI: https://doi.org/10.1016/j.ecoleng.2008.12.029.
  • [5] J.T. DeJong, M.B. Fritzges, K. Nüsslein, Microbially induced cementation to control sand response to undrained shear. Journal of Geotechnical and Geoenvironmental Engineering 132 (11), 1381-1392 (2006). DOI: https://doi.org/10.1061/(ASCE) 1090-0241(2006)132:11(1381).
  • [6] V.S. Whiffin, L.A. Van Paassen, M.P. Harkes, Microbial carbonate precipitation as a soil improvement technique. Geomicrobiology Journal 24 (5), 417-423 (2007). DOI: https://doi.org/10.1080/01490450701436505.
  • [7] Y. Gao, X. Tang, J. Chu, J. He, Microbially induced calcite precipitation for seepage control in sandy soil. Geomicrobiology Journal 36 (4), 366-375 (2019). DOI: https://doi.org/10.1080/01490451.2018.1556750.
  • [8] M. Luo, C.X. Qian, R.Y. Li, Factors affecting crack repairing capacity of bacteria-based self-healing concrete. Construction and Building Materials 87, 1-7 (2015). DOI: https://doi.org/10.1016/j.conbuildmat.2015.03.117.
  • [9] V. Achal, A. Mukherjee, M.S. Reddy, Microbial concrete: way to enhance the durability of building structures. Journal of Materials n Civil Engineering 23 (6), 730-734 (2011). DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0000159.
  • [10] G.D.O. Okwadha, J. Li, Optimum conditions for microbial carbonate precipitation. Chemosphere 81 (9), 1143-1148 (2010). DOI: https://doi.org/10.1016/j.chemosphere.2010.09.066.
  • [11] N.J. Jiang, K. Soga, The applicability of microbially induced calcite precipitation (MICP) for internal erosion control in gravel-sand mixtures. Géotechnique 67 (1), 42-55 (2017). DOI: https://doi.org/10.1680/jgeot.15.P.182.
  • [12] E. Salifu, E. MacLachlan, K.R. Iyer, C.W. Knapp, A. Tarantino, Application of microbially induced calcite precipitation in erosion mitigation and stabilisation of sandy soil foreshore slopes: A preliminary investigation. Engineering Geology 201, 96-105 (2016). DOI: https://doi.org/10.1016/j.enggeo.2015.12.027.
  • [13] L. Cheng, T. Kobayashi, M.A. Shahin, Microbially induced calcite precipitation for production of “bio-bricks” treated at partial saturation condition. Construction and Building Materials 231, 117095 (2020). DOI: https://doi.org/10.1016/j.conbuildmat. 2019.117095.
  • [14] A. Al Qabany, K. Soga, C. Santamarina, Factors affecting efficiency of microbially induced calcite precipitation. Journal of Geotechnical and Geoenvironmental Engineering 138 (8), 992-1001 (2012). DOI: https://doi.org/10.1061/(ASCE)GT. 1943-5606.0000666.
  • [15] B.M. Montoya, J.T. DeJong, Stress-strain behavior of sands cemented by microbially induced calcite precipitation. Journal of Geotechnical and Geoenvironmental Engineering 141 (6), 04015019 (2015). DOI: https://doi.org/10.1061/(ASCE)GT.1943-5606.0001302.
  • [16] G. Kim, J. Kim, H. Youn, Effect of temperature, pH, and reaction duration on microbially induced calcite precipitation. Applied Sciences 8 (8), 1277 (2018). DOI: https://doi.org/10.3390/app8081277.
  • [17] W. De Muynck, K. Verbeken, N. De Belie, W. Verstraete, Influence of temperature on the effectiveness of a biogenic carbonate surface treatment for limestone conservation. Applied Microbiology and Biotechnology 97 (3), 1335-1347 (2013). DOI: https://doi.org/10.1007/s00253-012-3997-0.
  • [18] K. Rowshanbakht, M. Khamehchiyan, R.H. Sajedi, M.R. Nikudel, Effect of injected bacterial suspension volume and relative density on carbonate precipitation resulting from microbial treatment. Ecological Engineering 89, 49-55 (2016). DOI: https://doi.org/10.1016/j.ecoleng.2016.01.010.
  • [19] L. Cheng, M.A. Shahin, J. Chu, Soil bio-cementation using a new one-phase low-pH injection method. Acta Geotechnica 14 (3), 615-626 (2019). DOI: https://doi.org/10.1007/s11440-018-0738-2.
  • [20] D. Gat, Z. Ronen, M. Tsesarsky, Long-term sustainability of microbial-induced CaCO3 precipitation in aqueous media. Chemosphere 184, 524-531 (2017). DOI: https://doi.org/10.1016/j.chemosphere.2017.06.015.
  • [21] K. Wen, Y. Li, S. Liu, C. Bu, L. Li, Development of an improved immersing method to enhance microbial induced calcite precipitation treated sandy soil through multiple treatments in low cementation media concentration. Geotechnical and Geological Engineering 37 (2), 1015-1027 (2019). DOI: https://doi.org/10.1007/s10706-018-0669-6.
  • [22] G.A. Riveros, A. Sadrekarimi, Effect of microbially induced cementation on the instability and critical state behaviours of Fraser River sand. Canadian Geotechnical Journal 57 (12), 1870-1880 (2020). DOI: https://doi.org/10.1139/cgj-2019-0514.
  • [23] A. Nafisi, Q. Liu, B.M. Montoya, Effect of stress path on the shear response of bio-cemented sands. Acta Geotechnica 16 (10), 3239-3251 (2021). DOI: https://doi.org/10.1007/s11440-021-01286-7.
  • [24] Y. Xiao, Y. Wang, S. Wang, T.M. Evans, A.W. Stuedlein, J. Chu, H. Liu, Homogeneity and mechanical behaviors of sands improved by a temperature-controlled one-phase MICP method. Acta Geotechnica 16 (5), 1417-1427 (2021). DOI: https://doi.org/10.1007/s11440-020-01122-4.
  • [25] X. Wang, C. Li, W. Fan, H. Li, Reduction of Brittleness of Fine Sandy Soil Biocemented by Microbial-Induced Calcite Precipitation. Geomicrobiology Journal 1-13 (2022). DOI: https://doi.org/10.1080/01490451.2021.2019858.
  • [26] Dong, Longjun, Yongchao Chen, Daoyuan Sun, and Yihan Zhang, Implications for rock instability precursors and principal stress direction from rock acoustic experiments. International Journal of Mining Science and Technology 31 (5), 789-798 (2021). DOI: https://doi.org/10.1016/j.ijmst.2021.06.006.
  • [27] K. Cyran, The influence of impurities and fabrics on mechanical properties of rock salt for underground storage in salt caverns – a review. Archives of Mining Sciences 66 (2), (2021). DOI: https://doi.org/10.24425/ams.2021.137454.
  • [28] A.I. Khuri, S. Mukhopadhyay, Response surface methodology. Wiley Interdisciplinary Reviews: Computational Statistics 2 (2), 128-149 (2010). DOI: https://doi.org/10.1002/wics.73.
  • [29] J. Madigan, M.T. Martinko, Brock biology of microorganisms, 11th ed (2003).
  • [30] L. Chen, L. Li, F. Xing, J. Peng, K. Peng, Y. Wang, Z. Xiang, Human urine-derived stem cells: potential for cellbased therapy of cartilage defects. Stem Cells International. (2018). DOI: https://doi.org/10.1155/2018/4686259.
  • [31] H. Lin, M.T. Suleiman, D.G. Brown, E. Kavazanjian, Mechanical behavior of sands treated by microbially induced carbonate precipitation. Journal of Geotechnical and Geoenvironmental Engineering 142 (2), 04015066 (2016). DOI: https://doi.org/10.1061/ (ASCE)GT.1943-5606.0001383.
  • [32] T. Sasaki, R. Kuwano, Undrained cyclic triaxial testing on sand with non-plastic fines content cemented with microbially induced CaCO3. Soils and Foundations 56 (3), 485-495 (2016). DOI: https://doi.org/10.1016/j.sandf.2016.04.014.
  • [33] Z. Han, X. Cheng, Q. Ma, An experimental study on dynamic response for MICP strengthening liquefiable sands. Earthquake Engineering and Engineering Vibration 15 (4), 673-679 (2016). DOI: https://doi.org/10.1007/s11803-016-0357-6.
  • [34] M. Azadi, M. Ghayoomi, N. Shamskia, H. Kalantari, Physical and mechanical properties of reconstructed biocemented sand. Soils and Foundations 57 (5), 698-706 (2017). DOI: https://doi.org/10.1016/j.sandf.2017.08.00.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-98320c20-02bf-4a42-ac19-b2e1b190b559
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.