PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nanorurki TiO2 : synteza i zastosowanie

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
TiO2 nanotubes : synthesis and application
Języki publikacji
EN
Abstrakty
EN
Among all transition-metal oxides, TiO2 is one of the most studied compounds in materials science. Its tested in many applications such as biomedical, photochemical, electrical and environmental. Among these applications, maximization of the surface area to achieve the highest efficiency is crucial, thus nanostructured forms of TiO2 are very popular. TiO2 can be obtained in the form of zero-dimensional materials (nanoparticles), one-dimensional (nanowires, nanotubes), two-dimensional (nanosheets) and three-dimensional (nanospheres). Among these various nanostructured forms of TiO2, nanotubes are of the greatest interest due to high electron mobility, quantum confinement effects, a high specific surface area and very high mechanical strength. One-dimensional TiO2 nanotubes can be synthesized using the template, hydro/solvothermal, electrospinning and anodic oxidation methods, which leads to obtaining material in the form of a powder or a thin layer. Notwithstanding, ordered layers of TiO2 nanotubes obtained by anodic oxidation are particularly interesting in terms of application. This mini-review provides an overview of preparation methods of TiO2 nanotubes as well describes its most important applications with attention to key features.
Rocznik
Strony
1195--1209
Opis fizyczny
Bibliogr. 60 poz., rys.
Twórcy
  • Katedra Technologii Środowiska, Wydział Chemii, Uniwersytet Gdański, ul. Wita Stwosza 63, 80-308 Gdańsk
Bibliografia
  • [1] S. Iijima, Nature., 1991, 354, 56.
  • [2] S. Gong, W. Cheng, Adv. Electron. Mater., 2017, 3, 1600314.
  • [3] Q. Wei, F. Xiong, S. Tan, L. Huang, E.H. Lan, B. Dunn, L. Mai, Adv. Mater., 2017, 29, 1602300.
  • [4] N. Rahimi, R.A. Pax, E.M. Gray, Prog. Solid State Chem., 2016, 44, 86.
  • [5] A.J. Haider, Z.N. Jameel, I.H.M. Al-Hussaini, Energy Procedia., 2019, 157, 17.
  • [6] M. Ge, C. Cao, J. Huang, S. Li, Z. Chen, K.-Q. Zhang, S.S. Al-Deyab, Y. Lai, J. Mater. Chem. A., 2016, 4, 6772.
  • [7] K. Lee, A. Mazare, P. Schmuki, Chem. Rev., 2014, 114, 9385.
  • [8] P. Roy, S. Berger, P. Schmuki, Angew. Chemie - Int. Ed., 2011, 50, 2904.
  • [9] M. Ge, Q. Li, C. Cao, J. Huang, S. Li, S. Zhang, Z. Chen, K. Zhang, S.S. Al-Deyab, Y. Lai, Adv. Sci., 2017, 4, 1.
  • [10] S. Lee, C. Jeon, Y. Park, Chem. Mater, 2004, 16, 4292.
  • [11] H. Wang, Y. Song, W. Liu, S. Yao, W. Zhang, Mater. Lett., 2013, 93, 319.
  • [12] N. Liu, X. Chen, J. Zhang, J.W. Schwank, Catal. Today., 2014, 225, 34.
  • [13] H. Tsuchiya, P. Schmuki, Nanoscale., 2020, 12, 8119.
  • [14] G.H. Du, Q. Chen, R.C. Che, Z.Y. Yuan, L.-M. Peng, Appl. Phys. Lett., 2001, 79, 3702.
  • [15] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Adv. Mater., 1999, 11, 1307.
  • [16] X. Qian, X. Yang, L. Jin, D. Rao, S. Yao, X. Shen, K. Xiao, S. Qin, J. Xiang, Mater. Res. Bull., 2017, 95, 402.
  • [17] T. Wan, S. Ramakrishna, Y. Liu, J. Appl. Polym. Sci., 2018, 135, 45649.
  • [18] P. Mazierski, J. Łuczak, W. Lisowski, M.J. Winiarski, T. Klimczuk, A. Zaleska-Medynska, Appl. Catal. B Environ., 2017, 214, 100.
  • [19] V. Zwilling, E. Darque-Ceretti, A. Boutry-Forveille, D. David, M.Y. Perrin, M. Aucouturier, Surf. Interface Anal., 1999, 27, 629.
  • [20] V. Zwilling, M. Aucouturier, E. Darque-Ceretti, Electrochim. Acta., 1999, 45, 921.
  • [21] D. Gong, C.A. Grimes, O.K. Varghese, W. Hu, R.S. Singh, Z. Chen, E.C. Dickey, J. Mater. Res., 2001, 16, 3331.
  • [22] D. Regonini, C.R. Bowen, A. Jaroenworaluck, R. Stevens, Mater. Sci. Eng. R Reports., 2013, 74, 377.
  • [23] M.T. Noman, M.A. Ashraf, A. Ali, Environ. Sci. Pollut. Res., 2019, 26, 3262.
  • [24] J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann, Chem. Rev., 2014, 114, 9919.
  • [25] J.M. Macak, M. Zlamal, J. Krysa, P. Schmuki, Small., 2007, 3, 300.
  • [26] X. Zhou, N. Liu, P. Schmuki, ACS Catal., 2017, 7, 3210.
  • [27] Y.L. Pang, S. Lim, H.C. Ong, W.T. Chong, Appl. Catal. A Gen., 2014, 481, 127.
  • [28] A. Merenda, A. Rana, A. Guirguis, D.M. Zhu, L. Kong, L.F. Dumée, J. Phys. Chem. C., 2019, 123, 2189.
  • [29] C. Das, P. Roy, M. Yang, H. Jha, P. Schmuki, Nanoscale., 2011, 3, 3094.
  • [30] Y.-C. Nah, I. Paramasivam, P. Schmuki, ChemPhysChem., 2010, 11, 2698.
  • [31] Z. Dong, D. Ding, T. Li, C. Ning, Appl. Surf. Sci., 2018, 443, 321.
  • [32] K. Arkusz, M. Nycz, E. Paradowska, D.G. Pijanowska, Monit. Manag., 2021, 15, 100401.
  • [33] A. Qu, H. Xie, X. Xu, Y. Zhang, S. Wen, Y. Cui, Appl. Surf. Sci., 2016, 375, 230.
  • [34] Z. Zheng, F. Zhuge, Y. Wang, J. Zhang, L. Gan, X. Zhou, H. Li, T. Zhai, Adv. Funct. Mater., 2017, 27, 1703115.
  • [35] D.P. Kumar, N.L. Reddy, M. Karthik, B. Neppolian, J. Madhavan, M. V Shankar, Sol. Energy Mater. Sol. Cells., 2016, 154, 78.
  • [36] R. Liu, Y. Bie, Y. Qiao, T. Liu, Y. Song, Mater. Lett., 2019, 251, 126.
  • [37] X.-F. Gao, W.-T. Sun, Z.-D. Hu, G. Ai, Y.-L. Zhang, S. Feng, F. Li, L.-M. Peng, J. Phys. Chem. C., 2009, 113, 20481.
  • [38] D. Kowalski, P. Schmuki, ChemPhysChem., 2012, 13, 3790.
  • [39] F. Gobal, M. Faraji, J. Electroanal. Chem., 2013, 691, 51.
  • [40] J.M. Macák, H. Tsuchiya, A. Ghicov, P. Schmuki, Electrochem. Commun., 2005, 7, 1133.
  • [41] G.K. Mor, K. Shankar, M. Paulose, O.K. Varghese, C.A. Grimes, Nano Lett., 2006, 6, 215.
  • [42] P. Roy, S.P. Albu, P. Schmuki, Electrochem. Commun., 2010, 12, 949.
  • [43] J.H. Park, T.-W. Lee, M.G. Kang, Chem. Commun., 2008, 25, 2867.
  • [44] A. Ghicov, S.P. Albu, J.M. Macak, P. Schmuki, Small., 2008, 4, 1063.
  • [45] S. Berger, A. Ghicov, Y.-C. Nah, P. Schmuki, T Langmuir., 2009, 25, 4841.
  • [46] I. Zeydabadi-Nejad, N. Zolfaghari, M. Mousavi Mashhadi, M. Baghani, M. Baniassadi, Sustain. Energy Technol. Assessments., 2021, 47, 101438.
  • [47] D. Fang, K. Huang, S. Liu, Z. Li, J. Alloys Compd., 2008, 464, L5.
  • [48] H.-T. Fang, M. Liu, D.-W. Wang, T. Sun, D.-S. Guan, F. Li, J. Zhou, T.-K. Sham, H.-M. Cheng, Nanotechnology., 2009, 20, 225701.
  • [49] G.F. Ortiz, I. Hanzu, P. Knauth, P. Lavela, J.L. Tirado, T. Djenizian, Electrochim. Acta., 2009, 54, 4262.
  • [50] J.-H. Kim, K. Zhu, J.Y. Kim, A.J. Frank, Electrochim. Acta., 2013, 88, 123.
  • [51] W. Wei, G. Oltean, C.-W. Tai, K. Edström, F. Björefors, L. Nyholm, J. Mater. Chem. A., 2013, 1, 8160.
  • [52] Y. Cheng, H. Yang, Y. Yang, J. Huang, K. Wu, Z. Chen, X. Wang, C. Lin, Y. Lai, J. Mater. Chem. B., 2018, 6, 1862.
  • [53] J. Park, S. Bauer, K. von der Mark, P. Schmuki, Nano Lett., 2007, 7, 1686.
  • [54] J. Park, S. Bauer, K.A. Schlegel, F.W. Neukam, K. von der Mark, P. Schmuki, Small., 2009, 5, 666.
  • [55] G.G. Genchi, Y. Cao, T.A. Desai, Micro Nano Technol., Elsevier, 2018, 143.
  • [56] C. von Wilmowsky, S. Bauer, R. Lutz, M. Meisel, F.W. Neukam, T. Toyoshima, P. Schmuki, E. Nkenke, K.A. Schlegel, J. Biomed. Mater. Res. Part B Appl. Biomater., 2009, 89B, 165.
  • [57] N.K. Shrestha, J.M. Macak, F. Schmidt-Stein, R. Hahn, C.T. Mierke, B. Fabry, P. Schmuki, Angew. Chemie Int. Ed., 2009, 48, 969.
  • [58] Y.-Y. Song, P. Roy, I. Paramasivam, P. Schmuki, Angew. Chemie Int. Ed., 2010, 49, 351.
  • [59] F. Schmidt-Stein, R. Hahn, J.-F. Gnichwitz, Y.Y. Song, N.K. Shrestha, A. Hirsch, P. Schmuki, Electrochem. Commun., 2009, 11, 2077.
  • [60] Y.-Y. Song, F. Schmidt-Stein, S. Bauer, P. Schmuki, J. Am. Chem. Soc., 2009, 131, 4230.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-982d77d0-fb69-4f43-99b5-d1f05bd3919d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.