PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Culture methods as indicators of the biological quality of phytostabilized heavy metal-contaminated soil

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The short-term effect of aided phytostabilization of heavy metalcontaminated soil on microorganisms under outdoor field conditions was tested. Heavy metal contaminated soil from a mining site was amended with lignite, lime and two commercial fertilizers and vegetated with grass Festuca arundinacea. Results demonstrated that the amended phytostabilization approach of Pb-Cd contaminated soil gave a positive change on the native microbial populations evaluated by culturable techniques during the first 28 weeks of the experimental period. In the end of the experiment, the number of bacteria, actinomycetes and fungi increased in treated soil about 16-fold, 10-fold and 2-fold, respectively. Changes in the biodiversity of bacterial populations were evaluated by the Ecophysiological Index (EP) and the Colony Development Index (CD) for oligotrophs and copiotrophs. During the experimental period slower growing microorganisms (K-strategists) predominated. The application of amendments to the soil led to an increase of the CD index in both copiotroph and oligotroph populations after 28 weeks. EP, CD, bacteria, actinomycetes and fungi increased in the treated soil. Traditional microbiological methods based on culture techniques can be used to evaluate the biological quality of the phytostabilized heavy metal-contaminated soil.
Rocznik
Strony
6--13
Opis fizyczny
Bibliogr. 38 poz., tab., wykr.
Twórcy
autor
  • Institute for Ecology of Industrial Areas, Department of Environmental Biotechnology, 40-844 Katowice, Kossutha 6, Poland
  • University of Silesia, Department of Biochemistry, 40-032 Katowice, Jagiellońska 28, Poland
autor
  • Institute for Ecology of Industrial Areas, Department of Environmental Biotechnology, 40-844 Katowice, Kossutha 6, Poland, Phone: +48 32 254 60 31 ext. 246; Fax: +48 32 254 17 17
autor
  • University of Silesia, Department of Biochemistry, 40-032 Katowice, Jagiellońska 28, Poland
  • Savannah River National Laboratory, Environmental Biotechnology Section, Bldg 999W, Aiken, SC, 29808 USA
autor
  • Institute for Ecology of Industrial Areas, Department of Environmental Biotechnology, 40-844 Katowice, Kossutha 6, Poland
Bibliografia
  • Alkorta, I., J.M. Becerri, C. Garbisu. 2010. Recovery of soil health: The ultimate goal of soil remediation processes. In: Trends in Bioremediation and Phytoremediation (ed. G. Płaza), pp. 1-9. Research Signpost, India.
  • Bardgett, R. 2005. The diversity of life in soil. In: The Biology of Soil – a Community and Ecosystem Approach (ed. M.J. Crawley, C. Little, T.R. Southwood, S. Ulfstrand), pp. 24-56. Oxford University Press, New York.
  • Barruti, O., L. Epelde, J.I. Garcia-Plazaola, C. Garbisu, J.M. Becerril. 2009. Phytoextraction potential of two Rumexacetosa L. accessions collected from metalliferous and non-metalliferous sites: Effect of fertilization. Chemosphere 74: 259-264.
  • Bloem, J., A.J. Schouten, S.J. Sřrensen, M. Rutgers, A. Van Der Werf, A.M. Breure. 2006. Monitoring and evaluating soil quality. In: Microbial Methods for Assessing Soil Quality (ed. J. Bloem, D.W. Hopkins, A. Benedetti), pp. 23-49. CABI Publishing.
  • Brigmon, R.L., D. Camper, F. Stutzenberger. 2002. Bioremediation of compounds hazardous to health and the environment – an overview. In: Biotransformations: Bioremediation Technology for Health and Environmental Protection (ed. V.P. Singh), pp. 1-28. Elsevier Science Publishers, The Netherlands.
  • Castaldi, S., F.A. Rutigliano, S.A. de Virzo. 2004. Suitability of soil microbial parameters as indicators of heavy metal pollution. Water Air & Soil Pollution 158: 21-35.
  • Dawson, J.J.C., E.J. Godsiffe, I.P. Thompson, T.K. Ralebitso-Senior, K.S. Killham, G.I. Paton. 2007. Application of biological indicators to assess recovery of hydrocarbon impacted soils. Soil Biology & Biochemistry 39: 164-177.
  • De Leij, F.A.A.M., J.M. Whipps, J.M. Lynch. 1993. The use of colony development for the characterization of bacterial communities in soil and on roots. Microbiology Ecology 27: 81-97.
  • Desai, C., H. Pathak, D. Madamwar. 2010. Advances in molecular and ”-omics” technologies to gauge microbial communities and bioremediation at xenobiotic/anthropogen contaminated sites. Bioresource Technology 101: 1558-1569.
  • Doran, J.W., T.B. Parkin. 1994. Defining and assessing soil quality. In: Defining Soil Quality for a Sustainable Environment (ed. J.W. Doran, D.C. Coleman, D.F. Bezdicek, B.A. Stewart), pp. 3-12. Soil Science Society of America, Inc., Madison, US.
  • Epelde, L., J.M. Becerril, J. Hernandez-Allica, O. Barrutia, C. Garbisu. 2008a. Functional diversity as indicator of the recovery of soil health derived from Thlaspi caerulescens growth and metal phytoextraction. Applied Soil Ecology 39: 299-310.
  • Epelde, L., J. Hernandez-Allica, J.M. Becerril, F. Blanco, C. Garbisu. 2008b. Effects of chelates on plants and soil microbial community: Comparison of EDTA and EDDS for lead phytoextraction. Science Total Environment 401: 21-28.
  • Garau G., P. Castaldi, L. Santona, P. Deiana, P. Melis. 2007. Influence of red mud, zeolite and lime on heavy metal immobilization, culturable heterotrophic microbial populations and enzyme activities in a contaminated soil. Geoderma 142: 47-57.
  • Gucwa-Przepióra, E., E. Małkowski, A. Sas-Nowosielska, R. Kucharski, J. Krzyżak, A. Kita, P. Romkens. 2007. Effect of chemophytostabilization practices on arbuscular mycorrhiza colonization of Deschampsia cespitosa ecotype Warynski at different soil depths. Environmental Pollution 150: 338-346.
  • Hernandez-Allica, J., J.M. Becerril, O. Zarate, C. Garbisu. 2006. Assessment of the efficiency of a metal phytoextraction process with biological indicators of soil health. Plant Soil 281: 147-158.
  • Hinojosa, M.B., R. García-Ruiz, J.A. Carreira. 2010. Utilizing microbial community structure and function to evaluate the health of heavy metal polluted soils. In: Soil Heavy Metals (ed. I. Sherameti, A. Varma), pp. 185-224. Springer Verlag, Germany.
  • Kandeler, E. 2007. Physiological and biochemical methods for studying soil biota and their function. In: Soil Microbiology, Ecology and Biochemistry (ed. E.A. Paul), pp 53-83. Academic Press, New York, US.
  • Kizilkaya, R., T. Askin, B. Bayrakli, M. Saglam. 2004. Microbiological characteristics of soils contaminated with heavy metals. European Journal of Soil Biology 40: 95-102.
  • Kotsou, M., I. Mari, K. Lasaridi, I. Chatzipavlidis, C. Balis, A. Kyriacou. 2004. The effect of olive oil mill wastewater (OMW) on soil microbial communities and suppressiveness against Rhizoctonia solani. Applied Soil Ecology 26: 113-121.
  • Knox, A.S., R.L. Brigmon, D.I. Kaplan, M.H. Paller. 2008. Interactions among phosphate amendments, microbes and uranium mobility in contaminated sediments. Science of Total Environment 395: 63-71.
  • Krzyżak, J., T. Lane, A. Czerwińska. 2006. The potential use of Festuca cultivars and lignite for phytostabilization of heavy metals polluted soils. In: Chemicals as Intentional and Accidental Global Environmental Threats (ed. L. Simeonow, E. Chirila), pp. 367-374. Springer Verlag, Germany.
  • Krzyżak, J., G. Płaza, R. Margesin, D. Wasilkowski, A. Mrozik. 2012. Microbial parameters as bioindicators of soil quality during aided phytostabilization of metal contaminated soil. Environmental Engineering and Mangment Journal 11: 1775-1782.
  • Kucharski, R., A. Sas-Nowosielska, E. Małkowski, J. Japenga, J.M. Kuperberg, M. Pogrzeba, J. Krzyżak. 2005. The use of indigenous plant species and calcium phosphate for the stabilization of highly metal-polluted sites in southern Poland. Plant Soil 273: 291-305.
  • Kumpiene, J., G. Guerri, L. Landi, G. Pietramellara, P. Nannipieri, G. Renella. 2009. Microbial biomass, respiration and enzyme activities after in situ aided phytostabilization of a Pb- and Cu-contaminated soil. Ecotoxicology & Environmental Safety 72: 115-119.
  • Kumpiene J., M. Mench, C.M. Bes, J.P. Fitts. 2011. Assessment of aided phytostabilization of copper-contaminated soil by X-ray absorption spectroscopy and chemical extractions. Environmental Pollution 159: 1536-1542.
  • Lombi, E., F.-J. Zhao, G. Wieshammer, G. Zhang, S.P. McGrath. 2002. In situ fixation of metals in soils using bauxite residue: biological effects. Environmental Pollution 118: 445-452.
  • Margesin, R., G. Płaza, S. Kasenbacher. 2011. Characterization of bacterial communities at heavy-metal-contaminated sites. Chemosphere 82: 1583-1588.
  • Markert, B.A., A.M. Breure, H.G. Zechmeister. 2003. Bioindicators and Biomonitors. Principles, Concepts and Applications. 997p. Elsevier Science Ltd.
  • Mench, M., G. Renella, A. Gelsomino, L. Landi, P. Nannipieri. 2006. Biochemical parameters and bacterial species richness in soils contaminated by sludge-borne metals and remediated with inorganic soil amendments. Environmental Pollution 144: 24-31.
  • Mora, de A.P., J.J. Ortega-Calvo, F. Cabrera, E. Madejon. 2005. Changes in enzyme activities and microbial biomass after “in situ” remediation of heavy metal-contaminated soil. Applied Soil Ecology 28: 125-137.
  • Nielsen, M.N., A. Winding. 2002. Microorganisms as indicators of soil health. NERI Technical Report No. 388, Ministry of the Environment, National Environmental Research Institute, Denmark.
  • Pankkurst, C.E., B.G. Hawke, H.J. McDonald, C.A. Kirkby, J.C. Buckerfield, P. Michelsen, K.A. O’Brien, V.V.S.R. Gupta, B.M. Doube. 1995. Evaluation of soil biological properties as potential bioindicators of soil health. Australian Journal of Experimental Agriculture 35: 1015-1028.
  • Płaza, G., G. Nałęcz-Jawecki, O. Pinyakong, P. Illmer, R. Margesin. 2010. Ecotoxicological and microbiological characterization of soils from heavy-metal and hydrocarbon-contaminated sites. Environmental Monitoring & Assessment 163: 477-488.
  • Renella, G., L. Landi, J. Ascher, M.T. Ceccherini, G. Pietramellara, M. Mench, P. Nannipieri. 2008. Long-term effects of aided phytostabilization of trace elements on microbial biomass and activity, enzyme activities, and composition of microbial community in the Jales contaminated mine spoils. Environmental Pollution 152: 702-712.
  • Sarathchandra, S.U., G. Burch, N.R. Cox. 1997. Growth patterns of bacterial communities in the rhizoplane and rhizosphere of white clover (Trifolium repens L.) and perennial ryegrass (Lolium perenne L.) in long-term pasture. Applied Soil Ecology 6: 293-299.
  • Smith, R.A.H., A.D. Bradshaw. 1979. The use of metal tolerant populations for reclamation of metalliferous wastes. Journal of Applied Ecology 16: 595–612.
  • Wilde, E., R.L. Brigmon, D. Dunn, M. Heitkamp, D. Dagnan. 2005. Use of vetiver grass for phytoextraction of lead from firing range soil. Chemosphere 61: 1451-1457.
  • Wuertz, S., M. Mergeay. 1997. Impact of heavy metals on soil microbial communities and their activities. In: Modern Soil Microbiology (ed. J.D. Van Elsas, J.T. Trevors, E. Wellington), pp. 607-642. Marcel Dekker, New York, US.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-982cca68-026d-4d39-a270-ad53936bdca9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.