Identyfikatory
Warianty tytułu
Analysis of chest protectors and ballistic shields in terms of the possibility of using spatial structures produced with additive methods
Języki publikacji
Abstrakty
Celem pracy była analiza wybranych konstrukcji dwóch typów osłon: ochraniaczy klatki piersiowej dla motocyklistów oraz lekkich, osobistych osłon balistycznych, w zakresie zastosowanych materiałów i rozwiązań konstrukcyjnych. W dalszej części pracy przeanalizowano, na podstawie przeglądu literatury, wybrane koncepcje struktur przestrzennych, dedykowanych pochłanianiu kinetycznej energii uderzenia. Na podstawie przeprowadzonych analiz sformułowano wnioski dotyczące możliwości opracowania i przebadania struktur przestrzennych wytwarzanych metodami przyrostowymi, stanowiących ochronę klatki piersiowej oraz kończyn przed odziaływaniem bodźców kinetycznych, generowanych dla prędkości uderzenia od 130 km/h do ok. 1300 km/h.
The aim of the article was to analyze selected designs of two types of shields: chest protectors for motorcyclists and light, personal ballistic shields, in terms of the materials and design solutions used. In the further part of the article, selected concepts of spatial structures dedicated to absorbing the kinetic impact energy were analyzed based on a literature review. Basing on the analyses, conclusions were drawn regarding the possibility of developing and testing spatial structures produced using additive technologies, protecting the chest and limbs against the kinetic impact generated at velocity from 130 km/h up to 1300 km/h.
Czasopismo
Rocznik
Tom
Strony
83--99
Opis fizyczny
Bibliogr. 47 poz., fot., rys.
Twórcy
autor
- Przemysłowe Centrum Optyki S.A. – Industrial Centre of Optics S.A.
autor
- Politechnika Warszawska, Wydział Mechaniczny Technologiczny
Bibliografia
- [1] P. D. . LIDÉN, E. M.Sc.; BERLIN, R. M.D., PHD.; JANZON, B. M.Sc., PH.D.; SCHANTZ, B. V.M.D., PH.D.; SEEMAN, T. M.D., “Some Observations Relating to Behind-body Armour Blunt Trauma Effects Caused by Ballistic Impact.,” J. Trauma Inj. Infect. Crit. Care, vol. 28(1), pp. S145–S148, 1988, [Online]. Available: https://journals.lww.com/jtrauma /abstract/1988/01001/some_observations_relating_to_behind_body_armour.29.aspx
- [2] A. W. Carroll and C. A. Soderstrom, “A New Nonpenetrating Ballistic Injury,” Ann. Surg., vol. 188, pp. 753–757, 1978.
- [3] H. J. Mertz, P. Prasad, A. L. Irwin, H. J. Mertz, P. Prasad, and A. L. Irwin, “Injury Risk Curves for Children and Adults in Frontal and Rear Collisions,” SAE Tech. Pap., Nov. 1997, doi: 10.4271/973318.
- [4] “PN-V-87000:2011 „Osłony balistyczne lekkie. Kamizelki kulo- i odłamkoodporne. Wymagania i badania.”.
- [5] U. Department of Justice, O. of Justice Programs, and N. Institute of Justice, “Ballistic Resistance of Body Armor NIJ Standard-0101.06”, Accessed: May 21, 2024. [Online]. Available: www.ojp.usdoj.gov/nij
- [6] “Ochraniacze pleców, tłumienie uderzeń (EN 1621-2).” Accessed: May 27, 2024. [Online]. Available: https://www.laboratuar.com/pl/testler/motosikletci-koruma-ekipmani-testleri/sirt-koruyucular-darbe-zayiflamasi-(en-1621-2)/
- [7] J. Pach, P. Mayer, K. Jamroziak, S. Polak, and D. Pyka, “Experimental analysis of puncture resistance of aramid laminates on styrene-butadiene-styrene and epoxy resin matrix for ballistic applications,” Arch. Civ. Mech. Eng., vol. 19, no. 4, pp. 1327-1337., 2019, doi: 10.1016/j. acme.2019.07.004.
- [8] S. Clifton, B. H. S. Thimmappa, R. Selvam, and B. Shivamurthy, “Polymer nanocomposites for high-velocity impact applications-A review,” Compos. Commun., vol. 17, no. August 2019, pp. 72–86, 2020, doi: 10.1016/j.coco.2019.11.013.
- [9] Z. Benzait and L. Trabzon, “A review of recent research on materials used in polymer–matrix composites for body armor application,” J. Compos. Mater., vol. 52, no. 23, pp. 3241–3263, 2018, doi: 10.1177/0021998318764002.
- [10] I. G. Crouch, “Critical interfaces in body armour systems,” 2020, doi: 10.1016/j.dt.2020. 11.006.
- [11] M. Fejdyś, K. Kośla, A. Kucharska-Jastrząbek, and M. Łandwijt, “Hybride composite armour systems with advanced ceramics and ultra-high molecular weight polyethylene (UHMWPE) fibres,” Fibres Text. East. Eur., vol. 24, no. 3, pp. 79–89, 2016, doi: 10.5604/12303666. 1196616.
- [12] F. S. da Luz, F. da C. G. Filho, M. S. Oliveira, L. F. C. Nascimento, and S. N. Monteiro, “Composites with natural fibers and conventional materials applied in a hard armor: A comparison,” Polymers (Basel)., vol. 12, no. 9, pp. 1–13, 2020, doi: 10.3390/POLYM 12091920.
- [13] M. Fejdyś, K. Kośla, A. Kucharska-Jastrząbek, and M. Łandwijt, “Influence of ceramic properties on the ballistic performance of the hybrid ceramic–multi-layered UHMWPE composite armour,” J. Aust. Ceram. Soc., 2020, doi: 10.1007/s41779-020-00516-7.
- [14] A. Kurzawa et al., “Assessment of the impact resistance of a composite material with EN AW-7075 matrix reinforced with α-Al2O3 particles using a 7.62 x 39 mm projectile,” Materials (Basel)., vol. 13, no. 3, pp. 1–22, 2020, doi: 10.3390/ma13030769.
- [15] A. Kurzawa, D. Pyka, K. Jamroziak, M. Bocian, P. Kotowski, and P. Widomski, “Analysis of ballistic resistance of composites based on EN AC-44200 aluminum alloy reinforced with Al2O3 particles,” Compos. Struct., vol. 201, no. August 2017, pp. 834–844, 2018, doi: 10.1016/j.compstruct.2018.06.099.
- [16] S. Y. Chusov and V. P. Yankov, “Investigation of Properties of Titanium Alloys with Mechanically Stable Beta-Structure for Body Armor Application,” pp. 54–57, 2009.
- [17] S. J. Cimpoeru, S. J. Alkemade, M. Szymczak, N. L. Rupert, W. H. Green, and J. M. Wells, “Ballistic assessment of a low-cost Ti-6Al-4V titanium alloy,” Aust. J. Mech. Eng., vol. 1, no. 1, pp. 5–9, 2003, doi: 10.1080/14484846.2003.11464459.
- [18] M. Karahan, A. Jabbar, and N. Karahan, “Ballistic impact behavior of the aramid and ultra-high molecular weight polyethylene composites,” J. Reinf. Plast. Compos., vol. 34, no. 1, pp. 37–48, 2015, doi: 10.1177/0731684414562223.
- [19] A. A. Shtertser, B. S. Zlobin, V. V. Kiselev, S. D. Shemelin, and P. A. Bukatnikov, “Characteristics of Reinforced Ultra-High Molecular Weight Polyethylene During Its Ballistic Penetration,” J. Appl. Mech. Tech. Phys., vol. 61, no. 3, pp. 471–478, 2020, doi: 10.1134/ S0021894420030190.
- [20] K. Jamroziak, “Evaluation of gunshot wounds in aspect of injury criterion,” Aktual. Probl. Biomech., vol. 11, pp. 33–46, 2016.
- [21] J. Pinkos, Z. Stempien, and A. Smędra, “Experimental analysis of ballistic trauma in a human body protected with 30 layer packages made of biaxial and triaxial Kevlar® 29 fabrics,” Def. Technol., vol. 21, pp. 73–87, Mar. 2023, doi: 10.1016/J.DT.2022.07.004.
- [22] “Kamizelka kuloodporna KKP-01-B – Produkty specjalne - Maskpol - producent sprzętu ochronnego dla Wojska.” Accessed: May 27, 2024. [Online]. Available: https://www. maskpol.com.pl/produkty-specjalne/kamizelka-kuloodporna-kkp-01-b
- [23] “KAMIZELKA KULOODPORNA SIGMA.” Accessed: May 27, 2024. [Online]. Available: https://lubawa.com.pl/pl/ochrona-indywidualna/kamizelki-kuloodporne/kamuflowane-wewnetrzne/kamizelka-kuloodporna-sigma
- [24] L. Wang, S. Kanesalingam, R. Nayak, and R. Padhye, “Recent Trends in Ballistic Protection,” Text. Light Ind. Sci. Technol., vol. 3, no. 0, p. 37, 2014, doi: 10.14355/tlist.2014.03.007.
- [25] P. Baranowski et al., “Deformation of honeycomb cellular structures manufactured with Laser Engineered Net Shaping (LENS) technology under quasi-static loading: Experimental testing and simulation,” Addit. Manuf., vol. 25, no. September 2018, pp. 307–316, 2019, doi: 10.1016/j.addma.2018.11.018.
- [26] P. Szymczyk-Ziółkowska, V. Hoppe, G. Ziółkowski, M. Smolnicki, and M. Madeja, “The effect of geometry on mechanical properties of Ti6Al4V ELI scaffolds manufactured using additive manufacturing technology,” Arch. Civ. Mech. Eng., vol. 20, Feb. 2020, doi: 10.1007/s43452-020-0011-y.
- [27] P. D. Kenneth Horn, Kimberlie Biever, Kenneth Burkman and A. Sheikh, Lewis Jamison, Michael Kolb, “Lightening body armor : Arroyo support to the Army response to Section 125 of the National Defense Authorization Act for Fiscal Year 2011,” Repotrt No. W74V8H-06-C-0001; United States Army: Santa Monica, USA, 2011.
- [28] L. Madej-Kiełbik, K. Ko´slako´sla, D. Zielí Nska, E. Chmal-Fudali, and M. Maciejewska, “Effect of Accelerated Ageing on the Mechanical and Structural Properties of the Material System Used in Protectors,” 2019, doi: 10.3390/polym11081263.
- [29] “Furygan D3O Ghost lvl 2 - protektor/ochraniacz łokci/kolan.” Accessed: May 27, 2024. [Online]. Available: https://motozbrojownia.pl/protektory-do-odziezy-motocyklowej/4706-r-furygan-d3o-ghost-lvl-2-protektorochraniacz-lokcikolan.html
- [30] “Ochraniacz pleców REV’IT! Seesoft RV | sklep-revit.pl.” Accessed: May 27, 2024. [Online]. Available: https://sklep-revit.pl/product-pol-50315-Ochraniacz-plecow-REVIT-Seesoft-RV.html
- [31] M. Kristoffersen, M. Costas, T. Koenis, V. Brøtan, C. Paulsen, and T. Børvik, “On the ballistic perforation resistance of additive manufactured AlSi10Mg aluminium plates,” Int. J. Impact Eng., vol. 137, p. 103476, Feb. 2019, doi: 10.1016/j.ijimpeng.2019.103476.
- [32] D. Garcia-Gonzalez, A. Rusinek, T. Jankowiak, and A. Arias, “Mechanical impact behavior of polyether-ether-ketone (PEEK),” Compos. Struct., vol. 124, pp. 88–99, 2015, doi: 10.1016/ j.compstruct.2014.12.061.
- [33] T. D. Ngo, A. Kashani, G. Imbalzano, K. T. Q. Nguyen, and D. Hui, “Additive manufacturing (3D printing): A review of materials, methods, applications and challenges,” 2018, doi: 10.1016/j.compositesb.2018.02.012.
- [34] A. Antolak-Dudka et al., “Static and Dynamic Loading Behavior of Ti6Al4V Honeycomb Structures Manufactured by Laser Engineered Net Shaping (LENSTM) Technology,” Materials (Basel)., vol. 12, no. 8, 2019, doi: 10.3390/ma12081225.
- [35] M. Costas, D. Morin, M. de Lucio, and M. Langseth, “Testing and simulation of additively manufactured AlSi10Mg components under quasi-static loading,” Eur. J. Mech. - A/Solids, vol. 81, p. 103966, Feb. 2020, doi: 10.1016/j.euromechsol.2020.103966.
- [36] P. Zochowski et al., “Ballistic impact resistance of bulletproof vest inserts containing printed titanium structures,” Metals (Basel)., vol. 11, no. 2, 2021, doi: 10.3390/met11020225.
- [37] P. Zawadzki and K. Żywicki, “Smart Product Design and Production Control for Effective Mass Customization in the Industry 4.0 Concept,” Manag. Prod. Eng. Rev., vol. 7, Feb. 2016, doi: 10.1515/mper-2016-0030.
- [38] D. Kongre, D. Sherekar, D. Akare, and P. Bhagat, “Manufacturing of Components using Rapid Prototyping : A Review,” Int. J. Sci. Res. Sci. Technol., pp. 739–745, Feb. 2023, doi: 10.32628/IJSRST523102102.
- [39] J. Hanssen, Z. Moe, D. Tan, and O. Chien, “Rapid Prototyping in Manufacturing,” 2015, pp. 2505–2523. doi: 10.1007/978-1-4471-4670-4_37.
- [40] A. Equbal, A. K. Sood, and M. Shamim, “Rapid tooling: A major shift in tooling practice,” Manuf. Ind. Eng., vol. 14, Feb. 2015, doi: 10.12776/mie.v14i3-4.325.
- [41] P. Platek, J. Sienkiewicz, J. Janiszewski, and F. Jiang, “Investigations on Mechanical Properties of Lattice Structures with Different Values of Relative Density Made from 316L by Selective Laser Melting (SLM),” Mater. 2020, Vol. 13, Page 2204, vol. 13, no. 9, p. 2204, May 2020, doi: 10.3390/MA13092204.
- [42] P. Płatek et al., “Deformation Process of 3D Printed Structures Made from Flexible Material with Different Values of Relative Density,” Polym. 2020, Vol. 12, Page 2120, vol. 12, no. 9, p. 2120, Sep. 2020, doi: 10.3390/POLYM12092120.
- [43] J. Sienkiewicz, P. Płatek, F. Jiang, X. Sun, and A. Rusinek, “Investigations on the Mechanical Response of Gradient Lattice Structures Manufactured via SLM,” Met. 2020, Vol. 10, Page 213, vol. 10, no. 2, p. 213, Feb. 2020, doi: 10.3390/MET10020213.
- [44] M. Kucewicz, P. Baranowski, M. Stankiewicz, M. Konarzewski, P. Płatek, and J. Małachowski, “Modelling and testing of 3D printed cellular structures under quasi-static and dynamic conditions,” Thin-Walled Struct., vol. 145, Dec. 2019, doi: 10.1016/J.TWS. 2019. 106385.
- [45] R. P. Bohara, S. Linforth, T. Nguyen, A. Ghazlan, and T. Ngo, “Anti-blast and -impact performances of auxetic structures: A review of structures, materials, methods, and fabrications,” Eng. Struct., vol. 276, Feb. 2023, doi: 10.1016/J.ENGSTRUCT.2022.115377.
- [46] M. Golaszewski, R. Grygoruk, I. Giorgio, M. Laudato, and F. Di Cosmo, “Metamaterials with relative displacements in their microstructure: technological challenges in 3D printing, experiments and numerical predictions,” Contin. Mech. Thermodyn., vol. 31, no. 4, pp. 1015–1034, Jul. 2019, doi: 10.1007/S00161-018-0692-0.
- [47] E. Barchiesi, G. Ganzosch, C. Liebold, L. Placidi, R. Grygoruk, and W. H. Müller, “Out-of-plane buckling of pantographic fabrics in displacement-controlled shear tests: experimental results and model validation,” Contin. Mech. Thermodyn., vol. 31, no. 1, pp. 33–45, Jan. 2019, doi: 10.1007/S00161-018-0626-X.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9826f601-686f-457f-837e-12029d4a5f71