PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Improvement of Weldability of Hot-Dip Galvanized Steel by Anti-Galvanizing Coating with Si-Fe-Al Oxide-Based Micropowder

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A Si-Fe-Al ternary oxide-based micropowder coating was used to prevent the formation of a Zn coating on steel during the hot-dip Zn galvanizing process to reduce the welding fume and defects generated during the welding of Zn-galvanized steel. The composition ratio of the oxide powder was optimized and its microstructure and weldability were evaluated. The optimized oxide coating was stable in the hot-dip galvanizing bath at 470°C and effectively inhibited the formation of Zn coating. The Zn residue could be easily removed with simple mechanical impact. The proposed coating reduced Zn fume and prevented the residual Zn from melting in the weld bead during high-temperature welding, thus reducing the number of welding defects. The results indicated that this pretreatment can simplify the manufacturing process and shorten the process time cost-effectively.
Twórcy
autor
  • Jeonbuk National University, Division of Advanced Materials Engineering, Jeonju, Republic of Korea
autor
  • Jeonbuk National University, Division of Advanced Materials Engineering, Jeonju, Republic of Korea
autor
  • Jeonbuk National University, Division of Advanced Materials Engineering, Jeonju, Republic of Korea
autor
  • Jeonbuk National University, Division of Advanced Materials Engineering, Jeonju, Republic of Korea
autor
  • Jeonbuk National University, Department of Energy Storage/Conversion Engineering of Graduate School, Department of Life Science, Hydrogen and Fuel Cell Research Center, Jeonju, Republic of Korea
autor
  • Mokpo National Maritime University, Division of Marine Mechatronics, Mokpo, Republic of Korea
autor
  • Jeonbuk National University, Division of Advanced Materials Engineering, Jeonju, Republic of Korea
Bibliografia
  • [1] C. Soriano, A. Alfantazi, Constr. Build. Mater. 102, 904-912 (2016).
  • [2] M.S. Oh, S.H. Kim, J.S. Kim, J.W. Lee, J.H. Shon, Y.S. Jin, Met Mater. Int. 22, 26-33 (2016).
  • [3] C. Qiao, L. Shen, L. Hao, X. Mu, J. Dong, W. Ke, J. Liu, B. Liu, J. Mater. Sci. Technol. 35, 2345-2356 (2019).
  • [4] S.M. Joo, Y.G. Kim, Y.J. Kwak, D.J. Yoo, C.U. Jeong, J.P. Park, M.S. Oh, Materials, 14, 6756 (2021).
  • [5] L. Chen, R. Fourmentin, J.R. McDermid, Metall. Mater. Trans. A 39A, 2128-2142 (2008).
  • [6] P. Andreazza, A. Gericke, K.M. Henkel, Weld. World 65, 1199-1210 (2021).
  • [7] M. Uchihara, Weld. Int. 25, 249-259 (2011).
  • [8] Y.M. Lim, B.S. Jang, J.H. Koh, J. Weld. Join. 30, 440-444 (2012).
  • [9] S.M. Shin, S.H. Rhee, Metals 8, 1077 (2018).
  • [10] J. Ma, F. Kong, B. Carlson, R. Kovacevic, Mitigating zinc vapor induced weld defects in laser welding of galvanized high-strength steel by using different supplementary means, Intech Open Access Publisher (2012).
  • [11] L. Hartmann, M. Bauer, J. Bertram, M. Gube, K. Lenz, U. Reisgen, T. Schettgen, T. Kraus, P. Brand, Int. J. Hyg. Envir. Heal. 217, 160-168 (2014).
  • [12] J. Bleidorn, H.A. Krabbe, B. Gerhards, T. Kraus, P. Brand, J. Krabbe, C. Martin, Sci. Rep. 9, 1-10 (2019).
  • [13] J. Krabbe, V. Beilmann, B. Gerhards, A. Markert, K. Thomas, T. Kraus, P. Brand, J. Occup. Environ. Med. 61, 8-15 (2019).
  • [14] https://galvanizeit.org/design-and-fabrication/fabrication-considerations/welding/welding-galvanized-steel
  • [15] D.H. Lee, D.Y. Seo, A partial inhibitor of hot dip galvanizing and method of hot dip galvanizing using the same, Patent KR 102082963 B1 (2020).
  • [16] D.H. Lee, D.Y. Seo, C.S. Kim, Manufacturing method for a partial inhibitor of hot dip galvanizing, Patent KR 101988631 B1 (2019).
  • [17] E. Moroni, Selective galvanizing process using a calcium carbonate masking composition, Patent US 04421793 A (1983).
  • [18] N.M. Adams, Silica sol-masking in galvanizing process, Patent US 03117085 A1 (1965).
  • [19] S.J. Choi, S.K. Kim, Selective plating device, Patent KR 1020160057734 A (2016).
  • [20] K.S. Yun, H.K. Ku, W.S. Kang, S.J. Kim, Corros. Sci. Technol. 11, 65-69 (2012).
  • [21] L. Colla, L. Fedele, M. Scattolini, S. Bobbo, Adv. Mech. Eng. 2012, 1-8 (2012).
  • [22] G. Ma, H. Yuan, L. Yu, Y. He, Mater. Manuf. Process 36, 1178-1188 (2021).
  • [23] Z. Mu, X. Chen, R. Hu, S. Lin, S. Pang, J. Phys. D Appl. Phys. 53, 075202 (2020).
Uwagi
1. This work was supported by the [National Research Foundation of Korea (NRF)] grant funded by the Korea Government (Ministry of Science and ICT) [No. 2022R1A2C1008972]. This work was also supported by the Technology Innovation Program (20012941, 20016850) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea). This work was also supported in part by “Research Base Construction Fund Support Program” funded by Jeonbuk National University in 2021. This work was also supported by a Korea Institute for Advancement of Technology grant, funded by the Korea Government (MOTIE) (P0002019), as part of the Competency Development Program for Industry Specialists.
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9826be19-02a1-4238-a6f6-9f2eabcce490
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.