PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluating the Total Phenolic, Protein Contents, Antioxidant and Pharmacological Effects of Cynodon dactylon Extracts Against Escherichia coli and Staphylococcus aureus

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The study was aimed to characterize the antioxidant and anti-microbial activities of Cynodon dactylon with special reference on its precise biochemical analysis. Physiological analysis that total carotenoids content (0.3884 ± 0.0172 mg/g), total chlorophyll content (6.1460 ± 0.2915 mg/g), total phenolic contents (13.4703 ± 0.1494 mg/g), chlorophyll a (3.7708 ± 0.1528 mg/g, catalase (CAT) contents (40.2844 ± 0.1515 units/ mg), total anthocyanin contents (5.0166 ± 0.2966 g–1 FW) total soluble proteins (2.9916 ± 0.1734 mg/g) and total flavonoids content (TFC) (4.7863 ± 0.0442 μg/g) was found higher in the leaves of the Cynodon dactylon whereas, chlorophyll b (2.4881 ± 0.1326 mg/g) was found higher in the stem of Cynodon dactylon, while, peroxidase (POD) contents (81.8763 ± 4.6609 units/mg) and superoxidase dismutase (SOD) activity (80.4346 ± 5.9367 units/mg) was investigated higher in roots of Cynodon dactylon. The anti-microbial activity of Cynodon dactylon extracts was performed using a good diffusion technique against two microbial strains. Among all the plant extracts, the methanolic extracts showed a maximum inhibition zone (26.87 mm) against anti-bacterial strain Escherichia coli whereas n-hexane extract showed a maximum inhibition zone (17.88 mm) against anti-fungal strain Candida albicans. This study reported the antimicrobial activity of Cynodon dactylon against some common pathogens such as Staphylococcus aureus, Escherichia coli, and Candida albicans, which are highly associated with nosocomial infection. From the given results it is concluded that Cynodon dactylon could be exploited in pharmacology due to its antioxidant and anti-microbial properties.
Rocznik
Strony
110--119
Opis fizyczny
Bibliogr. 75 poz., rys., tab., wz.
Twórcy
  • Department of Applied Chemistry, Government College University Faisalabad
autor
  • Department of Applied Chemistry, Government College University Faisalabad
autor
  • Department of Chemistry, Government College University Faisalabad, Pakistan
  • Department of Chemistry, Government College University Faisalabad, Pakistan
  • Department of Environmental Sciences Shaheed Benazir Bhutto University Sheringal Dir Upper
autor
  • Department of Environmental Sciences Shaheed Benazir Bhutto University Sheringal Dir Upper
  • Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
  • Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
  • Public Health Department, Faculty of Health Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
  • Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
  • Department of Chemistry, Al Lieth University College, Umm Al-Qura University, Makkah, Saudi Arabia
  • Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
Bibliografia
  • 1. Savadi, S., Vazifedoost, M., Didar, Z., Nematshahi, M.M., Jahed, E. (2020). Phytochemical Analysis and Antimicrobial/Antioxidant Activity of Cynodon dactylon (L.) Pers. Rhizome Methanolic Extract. J. Food Quality. vol. 2020, 1–10. DOI: 10.1155/2020/5946541.
  • 2. Ghosh, A.B.M., Banerjee, A., Chattopadhyay, S. (2022). An insight into the potent medicinal plant Phyllanthus amarus Schum. and Thonn. Nucleus (Calcutta). 65(3), 437–472. DOI: 10.1007/s13237-022-00409-z.3.
  • 3. Alagesaboopathi, C. & Sivakumar, R. (2011). Phytochemical screening studies on the leaves and stem of Andrographis neesiana Wight-An endemic medicinal plant from India. World Appl. Sci. J. 12(3), 307–311.
  • 4. Parthipan, M., Aravindhan, V., Rajendran, A. (2011). Medico-botanical study of Yercaud hills in the eastern Ghats of Tamil Nadu, India. Anc Sci Life, 30(4), 104–109.
  • 5. Divya, B., Mruthunjaya, K., & Manjula, S.N. (2011). Parkinsonia aculeata: a phytopharmacological review. Asian J. Plant Sci. 10(3), 175–181. DOI: 10.3923/ajps.2011.175.181.
  • 6. Pesek, T. (2008). Healing Traditions of Southern India and the Conservation of Culture and Biodiversity: A preliminary study. Ethnobot. Res. Appl. 6, 471–479. DOI: 10.17348/era.6.0.471-479.
  • 7. Savithramma, N., Rao, M.L., & Suhrulatha, D. (2011). Screening of medicinal plants for secondary metabolites. Middle-East J. Sci. Res. 8(3), 579–584.
  • 8. Kumar, A., Ilavarasan, R., Jayachandran, T., Decaraman, M., Aravindhan, P., Padmanabhan, N., & Krishnan, M.R.V. (2009). Phytochemicals investigation on a tropical plant, Syzygium cumini from Kattuppalayam, Erode district, Tamil Nadu, South India. Pakistan J. Nutrition, 8(1), 83–85. DOI: 10.3923/pjn.2009.83.85.
  • 9. Das, M.C., Shilpi, S., & Chandra, S. (2013). Overview of Cynodon dactylon (Doob Grass) in modern medicine as anti-diabetic herb. J. Drug Delivery and Therapeutics, 3(6), 117-120. DOI: 10.22270/jddt.v3i6.701.
  • 10. Christenhusz, M.J., & Byng, J.W. (2016). The number of known plants species in the world and its annual increase. Phytotaxa, 261(3), 201–217. DOI: 10.11646/phytotaxa.261.3.1.
  • 11. Soreng, R.J., Peterson, P.M., Romaschenko, K., Davidse, G., Zuloaga, F.O., Judziewicz, E.J., & Morrone, O. (2015). A worldwide phylogenetic classification of the Poaceae (Gramineae). J. Systemat. Evolut. 53(2), 117–137. DOI: 10.1111/jse.12150.
  • 12. Kang, S.Y., Lee, G.J., Lim, K.B., Lee, H.J., Park, I.S., Chung, S.J., & Rhee, H.K. (2008). Genetic diversity among Korean bermudagrass (Cynodon spp.) ecotypes characterized by morphological, cytological and molecular approaches. Molecules & Cells (Springer Science & Business Media BV), 25(2). https://pubmed.ncbi.nlm.nih.gov/18414016/
  • 13. Zaidan, B.B., Zaidan, A.A., & Mat Kiah, M.L. (2011). Impact of data privacy and confidentiality on developing telemedicine applications: A review participates opinion and expert concerns. Internat. J. Pharmacol. 7(3), 382–387. DOI: 10.3923/ijp.2011.370.375.
  • 14. Ayesha, M., Parwez, A., Gupta, V.C., Mushtaq, A., Amin, U., Arfin, S., & Janardhan, K. (2010). A study of antimicrobial activity of few medicinally important herbal single drugs extracted in ethanol, methanol and aqueous solvents. Pharmac. J. 2(10), 351–356.
  • 15. Rickett, H.W., & Stafleu, F.A. (1961). Nomina generica conservanda et rejicienda spermatophytorum VII. Bibliography (Continued). Taxon, 70–91. DOI: 10.2307/1216745.
  • 16. Karaca, M., Saha, S., Zipf, A., Jenkins, J.N., & Lang, D.J. (2002). Genetic diversity among forage bermudagrass (Cynodon spp.) evidence from chloroplast and nuclear DNA fingerprinting. Crop Sci. 42(6), 2118–2127. DOI: 10.1111/j.1744-697x.2005.00040.x.
  • 17. Abdullahi, A.E., Modisa, O., Molosiwa, O., & Mosarwe, L. (2001). Cynodon dactylon control in sunflower (Helianthus annuus) with postemergence graminicides in a semi-arid environment. Crop Protection, 20(5), 411–414. DOI: 10.1016/S0261-2194(00)00164-2.
  • 18. Abdullahi, A.E. (2002). Cynodon dactylon control with tillage and glyphosate. Crop Protection, 21(10), 1093–1100. DOI: 10.1016/S0261-2194(02)00062-5.
  • 19. Al-Snafi, A.E. (2016). Chemical constituents and pharmacological effects of Cynodon dactylon-A review. IOSR J. Pharmacy, 6(7), 17-31. DOI: 10.9790/3013-06721731.
  • 20. Ayaz, M., Ullah, F., Sadiq, A., Ullah, F., Ovais, M., Ahmed, J., & Devkota, H. P. (2019). Synergistic interactions of phytochemicals with antimicrobial agents: Potential strategy to counteract drug resistance. Chemico-biological Interactions, 308, 294–303. DOI: 10.1016/j.cbi.2019.05.050.
  • 21. Oyenihi, A.B., & Smith, C. (2019). Are polyphenol antioxidants at the root of medicinal plant anti-cancer success?. J. Ethnopharmac, 229, 54–72. DOI: 10.1016/j.jep.2018.09.037.
  • 22. Maher, P. (2019). The potential of flavonoids for the treatment of neurodegenerative diseases. Internat. J. Molec. Sci. 20(12), 3056. DOI: 10.3390/ijms20123056.
  • 23. Ramya, S.S., Vijayanand, N., & Rathinavel, S. (2014). Antidiabetic activity of Cynodon dactylon (l.) pers. extracts in alloxan induced rats. Int. J. Pharm. Pharm. Sci. 6(4), 348–352. DOI: 10.1111/j.1440-1681.2006.04444.x.
  • 24. Jolly, C.I., & Narayanan, P. (2000). Pharmacognosy of aerial parts of Cynodon dactylon Pers.(Graminae). Ancient Sci. Life, 19(3–4), 123. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3336437/
  • 25. Ashokkumar, K., Selvaraj, K., & Muthukrishnan, S.D. (2013). Cynodon dactylon (L.) Pers.: An updated review of its phytochemistry and pharmacology. J. Med. Plants. Res. 7(48), 3477–3483. DOI: 10.5897/JMPR2013.5316x.
  • 26. Nayanatara, A.K., Kottari, S., Alva, A., Soofi, A.A., Rejeesh, E.P., Bhagyalakshmi, K., & Pai, S.R. (2012). Effect of aqueous extract of Cynodon dactylon on reproductive hormones and reproductive organ weight of female Wistar rats. Internat. J. Biol., Pharmacy and Allied Sci., 1(8), 1065–1076. http://eprints.manipal.edu/id/eprint/77121
  • 27. Rajakumar, N., & Shivanna, M.B. (2009). Ethno-medicinal application of plants in the eastern region of Shimoga district, Karnataka, India. J. Ethnopharmac., 126(1), 64–73. DOI: 10.1016/j.jep.2009.08.010.
  • 28. Saikia, A.P., Ryakala, V.K., Sharma, P., Goswami, P., & Bora, U. (2006). Ethnobotany of medicinal plants used by Assamese people for various skin ailments and cosmetics. J. Ethnopharmac., 106(2), 149–157. DOI: 10.1016/j.jep.2005.11.033.
  • 29. Auddy, B., Ferreira, M., Blasina, F., Lafon, L., Arredondo, F., Dajas, F., & Mukherjee, B. (2003). Screening of antioxidant activity of three Indian medicinal plants, traditionally used for the management of neurodegenerative diseases. J. Ethnopharmac. 84(2–3), 131–138. DOI: 10.1016/S0378-8741(02)00322-7.
  • 30. Yoshida, S. (1976). Routine procedures for growing rice plants in culture solution. Laboratory manual for physiological studies of rice, 61–66. DOI: 10.4236/ajmb.2013.32014.
  • 31. Davies, B.H., & Taylor, R.F. (1976). Carotenoid biosynthesis—the early steps. In Carotenoids–4 (pp. 211-221). Pergamon. https://link.springer.com/chapter/10.1007/978-1-4613-0849-2_10
  • 32. Hildebrandt, S., Steinhart, H., & Paschke, A. (2008). Comparison of different extraction solutions for the analysis of allergens in hen’s egg. Food Chem. 108(3), 1088–1093. DOI: 10.1016/j.foodchem.2007.11.051.
  • 33. Hodges, D.M., & Nozzolillo, C. (1996). Anthocyanin and anthocyanoplast content of cruciferous seedlings subjected to mineral nutrient deficiencies. J. Plant Phys., 147(6), 749–754. DOI: 10.1111/nph.18833.
  • 34. Julkunen-Tiitto, R. (1985). Phenolic constituents in the leaves of northern willows: methods for the analysis of certain phenolics. Journal of Agricultural and Food Chemistry, 33(2), 213-217. DOI: 10.1021/jf00062a013.
  • 35. Gong, L., Kyriakides, S., & Triantafyllidis, N. (2005). On the stability of Kelvin cell foams under compressive loads. Journal of the Mechanics and Physics of Solids, 53(4), 771-794. DOI:10.1016/j.jmps.2004.10.007.
  • 36. Cakmak, I., Strbac, D., & Marschner, H. (1993). Activities of hydrogen peroxide-scavenging enzymes in germinating wheat seeds. J. Experimental Botany, 44(1), 127–132. DOI: 10.1093/jxb/44.1.127.
  • 37. Chaudhari, Y., Mody, H.R., & Acharya, V.B. HSNCB’s Dr. LH Hiranandani College of Pharmacy, Ulhasnagar. Maharashtra. India. Email: replytoyog@gmail. com.
  • 38. Mohammadi, A.S., & Babakhani, B. (2016). Examining the antibacterial activity of Artemisia dracunculus L. extracts using different methods of extraction. https://pubmed.ncbi.nlm.nih.gov/28491247/
  • 39. Muthukrishnan, S.D., Kaliyaperumal, A., & Subramaniyan, A. (2015). Identification and determination of flavonoids, carotenoids and chlorophyll concentration in Cynodon dactylon (L.) by HPLC analysis. Natural Product Res., 29(8), 785–790. DOI: 10.1080/14786419.2014.986125.
  • 40. Vivek, P., Prabhakaran, S., & Shankar, S.R. (2013). Assessment of nutritional value in selected edible greens based on the chlorophyll content in leaves. Research in Plant Biology, 3(5). https://updatepublishing.com/journal/index.php/ripb/article/view/250
  • 41. De Pee, S. (1996). Food-based approaches for controlling vitamin A deficiency: studies in breastfeeding women in Indonesia. De Pee.
  • 42. Sies, H., & Stahl, W. (1995). Vitamins E and C, beta-carotene, and other carotenoids as antioxidants. The American J. Clin. Nutrition, 62(6), 1315S–1321S. DOI: 10.1093/ajcn/62.6.1315S.
  • 43. Johnson, E.J. (2002). The role of carotenoids in human health. Nutrition in Clin. Care, 5(2), 56–65. DOI: 10.1046/j.1523-5408.2002.00004.x.
  • 44. Okpuzor, J., Ogbunugafor, H., Kareem, G.K., & Igwo-Ezikpe, M.N. (2009). In vitro investigation of antioxidant phenolic compounds in extracts of Senna alata. Research J. Phytochem., 3(4), 68–76. DOI: rjphyto.2009.68.76.
  • 45. Choudhary, N., Siddiqui, M.B., Azmat, S., & Khatoon, S. (2013). Tinospora cordifolia: ethnobotany, phytopharmacology and phytochemistry aspects. Internat. J. Pharmac.l Sci. Res., 4(3), 891–899. DOI: 10.13040/IJPSR.0975-8232.
  • 46. Liu, X. and C. Kokare, Biotechnol. Microbial Enzymes. 2017, Elsevier Amsterdam, The Netherlands: DOI: 10.3390/foods9030326.
  • 47. Kaushal, J., Mehandia, S., Singh, G., Raina, A., & Arya, S.K. (2018). Catalase enzyme: Application in bioremediation and food industry. Biocatal. Agric. Biotechnol. 16, 192–199. DOI: 10.1016/J.BCAB.2018.07.035.
  • 48. He, K., Li, X., Chen, X., Ye, X., Huang, J., Jin, Y., & Shu, H. (2011). Evaluation of antidiabetic potential of selected traditional Chinese medicines in STZ-induced diabetic mice. J. Ethnopharmac., 137(3), 1135–1142. DOI: 10.1016/j. jep.2011.07.033.
  • 49. Laleh, G.H., Frydoonfar, H., Heidary, R., Jameei, R., & Zare, S. (2006). The effect of light, temperature, pH and species on stability of anthocyanin pigments in four Berberis species. Pakistan J. Nutrition, 5(1), 90–92. DOI: 10.3923/pjn.2006.90.92.
  • 50. Lapidot, T., Harel, S., Akiri, B., Granit, R., & Kanner, J. (1999). pH-dependent forms of red wine anthocyanins as antioxidants. J. Agric. Food Chem., 47(1), 67–0. DOI: 10.1021/jf980704g.
  • 51. Bhat, S.V., Nagasampagi, B.A., & Sivakumar, M. (2005). Chemistry of natural products. Alpha Science Int’l Ltd. Bhat, S.V., Nagasampagi, B.A., & Sivakumar, M. (2005). Chem. Natural Products. Alpha Sci. Int’l Ltd. DOI: 10.1002/CBIC.200500134.
  • 52. Dewick, P.M. (2002). Medicinal natural products: a biosynthetic approach. John Wiley & Sons. ISBN: 978-0-470-74168-9
  • 53. Arnason, J.T., Mata, R., & Romeo, J.T. (1995). Recent trends in phytochemistry. DOI: 10.1007/978-1-4899-1778-2.
  • 54. Rai, P.K., Jaiswal, D., Rai, D.K., Sharma, B., & Watal, G. (2010). Antioxidant potential of oral feeding of Cynodon dactylon extract on diabetes~induced oxidative stress. J. Food Biochem., 34(1), 78–92. DOI: 10.1111/j.1745-4514.2009.00265.x.
  • 55. Manuchehri, R., & Salehi, H. (2014). Physiological and biochemical changes of common bermudagrass (Cynodon dactylon [L.] Pers.) under combined salinity and deficit irrigation stresses. South African J. Botany, 92, 83–88. DOI: 10.1016/j. sajb.2014.02.006.
  • 56. Khlifi, D., Hayouni, E.A., Valentin, A., Cazaux, S., Moukarzel, B., Hamdi, M., & Bouajila, J. (2013). LC–MS analysis, anticancer, antioxidant and antimalarial activities of Cynodon dactylon L. extracts. Ind. Crops Products, 45, 240–247. DOI: 10.1016/j.indcrop.2012.12.030.
  • 57. Savadi, S., Vazifedoost, M., Didar, Z., Nematshahi, M.M., & Jahed, E. (2020). Phytochemical analysis and antimicrobial/antioxidant activity of Cynodon dactylon (L.) Pers. rhizome methanolic extract. J. Food Quality, 2020, 1–10. DOI: 10.1155/2020/5946541.
  • 58. Poojary, R., Kumar, N.A., Kumarachandra, R., & Sanjeev, G. (2016). Evaluation of in vitro antioxidant properties of hydro alcoholic extract of entire plant of Cynodon dactylon. J. Young Pharmac., 8(4), 378. DOI: 10.5530/jyp.2016.4.13.
  • 59. Madhan Kumar, S.J., Janakiraman, A.K., Saleem TS, S. (2018). Preliminary Phytochemical Screening, In Vitro and In Vivo Antioxidant Activities of Cynodon Dactylon (L.) Pers. Internat. J. Chem. Tech. Res., 11(03), 210–218. DOI : DOI: 10.20902/IJCTR.2018.110323.
  • 60. Pandey, V.P., Awasthi, M., Singh, S., Tiwari, S., & Dwivedi, U.N. (2017). A comprehensive review on function and application of plant peroxidases. Biochem. Anal. Biochem. 6(1), 308. DOI: 10.4172/2161-1009.1000308.
  • 61. Landis, G.N., & Tower, J. (2005). Superoxide dismutase evolution and life span regulation. Mech. Ageing Development, 126(3), 365–379. DOI: 10.1016/j.mad.2004.08.012.
  • 62. Noor, R., Mittal, S., & Iqbal, J. (2002). Superoxide dismutase-applications and relevance to human diseases. Medical science monitor: Internat. Med. J. Experimental Clinical Res., 8(9), RA210-5. https://pubmed.ncbi.nlm.nih.gov/12218958/
  • 63. Yasui, K., & Baba, A. (2006). Therapeutic potential of superoxide dismutase (SOD) for resolution of inflammation. Inflammation Res., 55, 359–363. DOI 10.1007/s00011-006-5195-y.
  • 64. Corvo, M.L., Jorge, J.C., van’t Hof, R., Cruz, M.E.M., Crommelin, D.J., & Storm, G. (2002). Superoxide dismutase entrapped in long-circulating liposomes: formulation design and therapeutic activity in rat adjuvant arthritis. Biochim. Biophys. Acta (BBA)-Biomembranes, 1564(1), 227–236. DOI: 10.1016/s0005-2736(02)00457-1.
  • 65. Abdullah, S., Gobilik, J., & Chong, K.P. (2013). In vitro antimicrobial activity of Cynodon dactylon (L.) Pers.(bermuda) against selected pathogens. Developments in Sustainable Chemical and Bioprocess Technology, 227–237. DOI: 10.1007/978-1-4614-6208-8_29.
  • 66. Hariharan, D., Srinivasan, K., & Nehru, L.C. (2017). Synthesis and characterization of TiO2 nanoparticles using cynodon dactylon leaf extract for antibacterial and anticancer (A549 Cell Lines) Activity. J. Nanomed. Res, 5(6), 138–142. DOI: 10.15406/jnmr.2017.05.00138.
  • 67. Gideon, P.E., Sugumar, R., & David, D.C. (2017). An in vitro study of antibacterial and antifungal activity of Cynodon dactylon. National J. Phys., Pharmacy Pharmacol., 7(4), 381. DOI: 10.5455/njppp.2017.7.1131912122016.
  • 68. Savadi, S., Vazifedoost, M., Didar, Z., Nematshahi, M.M., & Jahed, E. (2020). Phytochemical analysis and antimicrobial/antioxidant activity of Cynodon dactylon (L.) Pers. rhizome methanolic extract. J. Food Quality, 2020, 1–10. DOI: 10.1155/2020/5946541.
  • 69. Shah, S.W.A., Siddique Afridi, M., Ur-Rehman, M., Hayat, A., Sarwar, A., Aziz, T., & Alasmari, A.F. (2023). In-vitro evaluation of phytochemicals, heavy metals and antimicrobial activities of leaf, stem and roots extracts of Caltha palustris var. alba. J. Chilean Chem. Soc., 68(1), 5807–5812. DOI: 10.4067/S0717-97072023000105807.
  • 70. Aziz, T., Ihsan, F., Khan, A.A., ur Rahman, S., Zamani, G.Y., Alharbi, M., & Alasmari, A.F. (2023). Assessing the pharmacological and biochemical effects of Salvia hispanica (Chia seed) against oxidized Helianthus annuus (sunflower) oil in selected animals. Acta Biochim. Polonica, 70(1), 211–218 DOI: 10.18388/abp.2020_6621.
  • 71. Ahmad, B., Muhammad Yousafzai, A., Maria, H., Khan, A.A., Aziz, T., Alharbi, M., & Alasmari, A.F. (2023). Curative Effects of Dianthus orientalis against Paracetamol Triggered Oxidative Stress, Hepatic and Renal Injuries in Rabbit as an Experimental Model. Separations, 10(3), 182. DOI: 10.3390/separations10030182.
  • 72. ur Rahman, S., Zahid, M., Khan, A.A., Aziz, T., Iqbal, Z., Ali, W., & Alshammari, A. (2022). Hepatoprotective effects of walnut oil and Caralluma tuberculata against paracetamol in experimentally induced liver toxicity in mice. Acta Biochim. Polonica, 69(4), 871–878. DOI: 10.18388/abp.2020_6387.
  • 73. Saleem, K., Aziz, T., Khan, A.A., Muhammad, A., ur Rahman, S., Alharbi, M., & Alasmari, A.F. (2023). Evaluating the in-vivo effects of olive oil, soya bean oil, and vitamins against oxidized ghee toxicity. Acta Biochim. Polonica, 70(2), 305–312. DOI: 10.18388/abp.2020_6549.
  • 74. Ammara, A., Sobia, A., Nureen, Z., Sohail, A., Abid, S., Aziz, T., & Saad, A. (2023). Revolutionizing the effect of Azadirachta indica extracts on edema induced changes in C-reactive protein and interleukin-6 in albino rats: in silico and in vivo approach. European Rev. Med. Pharmacol. Sci., 27(13), 5951–5963. DOI: 10.26355/eurrev_202307_32947.
  • 75. Rahim, G., Qureshi, R., Hazrat, A., Ahmad, B., Ali Khan, A., Aziz, T., & Alshammari, A. (2023). Phytochemical, antimicrobial, radical scavenging and in-vitro biological activities of Teucrium stocksianum leaves. J. Chilean Chem. Soc., 68(1), 5748–5754. DOI: 10.4067/S0717-97072023000105748.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9826136f-ee79-4c34-af10-72f7405e9426
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.