Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper presents resistance sensor structures with a graphene sensing layer. The structures were tested concerning their sensitivity to the affects of hydrogen, nitrogen dioxide and steam in an atmosphere of a synthetic air. Investigations have proved that resistance structures with a graphene layer are sensitive to the presence of the tested gases. The resistance of the structures amounted to about 10Ω, whereas changes in the resistances affected by the external gaseous medium were contained within the range of a several mΩ. The investigations confirmed that the resistance structures with graphene exposed to the affect of hydrogen in atmosphere of synthetic air change their resistances practically at once (within the order of only a few seconds). This indicates that such structures might be practically applied in sensors of hydrogen ensuring a short time of response.
Słowa kluczowe
Rocznik
Tom
Strony
293--300
Opis fizyczny
Bibliogr. 20 poz., rys., wykr.
Twórcy
autor
- Department of Optoelectronics, Silesian University of Technology, 2 Akademicka St., 44-100 Gliwice, Poland
autor
- Department of Optoelectronics, Silesian University of Technology, 2 Akademicka St., 44-100 Gliwice, Poland
autor
- Department of Optoelectronics, Silesian University of Technology, 2 Akademicka St., 44-100 Gliwice, Poland
autor
- Department of Optoelectronics, Silesian University of Technology, 2 Akademicka St., 44-100 Gliwice, Poland
autor
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 9 Strzody St., 44-100 Gliwice, Poland
autor
- Department of Optoelectronics, Silesian University of Technology, 2 Akademicka St., 44-100 Gliwice, Poland
autor
- Department of Optoelectronics, Silesian University of Technology, 2 Akademicka St., 44-100 Gliwice, Poland
autor
- Department of Optoelectronics, Silesian University of Technology, 2 Akademicka St., 44-100 Gliwice, Poland
autor
- Department of Optoelectronics, Silesian University of Technology, 2 Akademicka St., 44-100 Gliwice, Poland
autor
- Institute of Electronic Materials Technology, 133 Wólczanska St., 01-919 Warsaw, Poland
autor
- Institute of Electronic Materials Technology, 133 Wólczanska St., 01-919 Warsaw, Poland
Bibliografia
- [1] E. Hill, A. Vijayaragahvan, and K. Novoselov, “Graphene sensors”, IEEE Sensors J. 11 (12), 3161–3170 (2011).
- [2] A. Geim and K. Novoselov, “The rise of graphene”, Nature Materials 6 (3), 183–191 (2007).
- [3] J. Cassidy, S. Pons, and J. Janata, “Gate field effect transistor modified with pollypyrrole as alcohol detector”, Anal. Chem. 58, 1757–1760 (1986).
- [4] J. Kong, N.R. Franklin, C. Zhou, M. Chapline, S. Peng, K. Cho, and H. Dai, “Nanotube molecular wires as chemical sensors”, Science 287, 622–625 (2000).
- [5] J. Berashevich and T. Chakraborty, “Tunable bandgap and magnetic ordering adsorption of moleculles on graphene”, Phys. Rev. B 80 (3), 3404–3406 (2009).
- [6] V. Singh, D. Joung, L. Zhai, S. Das, S.I. Khondaker, and S. Deal, “Graphene based materials: past, present and future”, Progress in Material Science 56, 1178–1271 (2011).
- [7] F. Yavari, C. Kritzinger, C. Gaire, L. Song, H. Gulapalli, T. Borca-Tasciuc, P.M. Ajayan, and N. Koratkar, “Tunable band gap in graphene by the controlled adsorption of water molecules”, SD Small 6 (22), 2535–2538 (2010).
- [8] F. Schedin, A.K. Geim, S.V. Morozov, E.E. Hill, P. Blake, M.I. Katsnelson, and K.S. Novoselov, “Detection of individual gas molecules adsorbed on graphene”, Nature Materials 6, 652–655 (2007).
- [9] R.S. Sundaram, C. Gomez-Navarro, K. Balasubramanian, M. Burghard, and K. Kern, “Electrochemical modification of graphene”, Adv. Mater. 20, 3050–3053 (2008).
- [10] Byung Hwan Chu, C.F. Lo, J. Nicolasi, C.Y. Chang, V. Chen, W. Strupinski, S.J. Pearton, and F. Ren, “Hydrogen detection using platinum coated graphene grown on SiC”, Sensor and Actuators B 157, 500–503 (2011).
- [11] P.E. Gaskell, H.S. Skulason, W. Strupinski, and T. Szkopek, “High spatial resolution ellipsometer for characterization of epitaxial graphene”, Opt. Lett. 35 (20), 3336–3340 (2010).
- [12] X. Liang, B.A. Sperling, I. Calizo, G. Cheng, C.A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, Q. Li, X. Zhu, H. Yuan, A.R.H. Walker, Z. Liu, Lian-mao Peng, and C.A. Richter, “Toward clean and crackless transfer of graphene”, ACS Nano 5, 9144–9153 (2011).
- [13] A. Reina, H. Son, L. Jiao, B. Fan, M.S. Dresselhaus, Z. Liu, and J. Kong, “Transferring and Identification of Single- and Few-Layer Graphene on Arbitrary Substrates”, J. Phys. Chem. C 112, 17741–17744 (2008).
- [14] T. Pustelny, E. Maciak, Z. Opilski, and N. Bednorz, “Optical interferometric structures for application in gas sensors”, Optica Applicata 37 (1–2) 187–194 (2007).
- [15] T. Pustelny, M. Setkiewicz, S. Drewniak, E. Maciak, A. Stolarczyk, M. Procek, M. Urbańczyk, K. Gut, Z. Opilski, I. Pasternak, and W. Strupinski, “The influence of humidity on the resistance structures with graphene sensor layer”, Acta Phys. Pol. A 122 (9), 870–873 (2012).
- [16] E. Maciak, Z. Opilski, T. Pustelny, and M. Bednorz, “An optical detection NH3 gas by means of a-WO3 thin films based on SPR technique”, Journal de Physique IV: JP 129, 131–136 (2005).
- [17] Z. Opilski, T. Pustelny, E. Maciak, M. Bednorz, A. Stolarczyk, and M. Jadamiec, “Investigations of optical interferometric structures applied in toxic gas sensors”, Bull. Poll. Ac.: Tech. 53 (2), 151–156 (2005).
- [18] W. Jakubik, M. Urbańczyk, E. Maciak, and T. Pustelny, “Surface acoustic wave hydrogen gas sensor based on layered structure of palladium/metal-free phthalocyanine”, Bull. Poll. Ac.: Tech. 56 (2), 133–138 (2008).
- [19] M. Urbańczyk, E. Maciak, K. Gut, T. Pustelny, and W. Jakubik, “Layered thin film nanostructures of Pd/WO3−x as resistance gas sensors”, Bull. Poll. Ac.: Tech. 59 (4), 401–407 (2011).
- [20] T.Pustelny, M. Procek, E. Maciak, A. Stolarczyk, S. Drewniak, M. Urbańczyk, M. Setkiewicz, K. Gut, and Z. Opilski, “Gas sensors based on nanostructures TiO2 and ZnO”, Bull. Pol. Ac.: Tech. 60 (4), 853–859 (2012).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9824d4f3-e842-4cac-b5e1-694e771a2a43