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1. Introduction 

The paper is concentrated on the reliability analysis of 

large multi-state parallel-series systems with dependent 

and independent failures of components. A parallel-

series system with dependent components is 

considered as a system of a number of parallel 

subsystems linked in series, each of them composed of 

components with dependent failures. The system is 

failed if all components in at least one of its subsystem 

are failed. In the reliability analysis of their parallel 

subsystems, it seems natural to assume that the failures 

of one or several of their components may cause the 

reliability characteristics of their un-failed components 

worsening. In such systems the increased load caused 

by one or several of its components’ failures may 

cause the increase of the failure rates of remaining un-

failed components. The rules of load sharing between 

remaining not failed components that are the rules of 

their failure rates increase may be different. In the 

paper it is assumed that the load is distributed equally 

among all un-failed components of considered parallel 

systems and subsystems. This means that the failure 

rates of these components are changing in an 

analogical way that is the failure rates are increasing 

with the same level. 

Some results on limit reliability functions of two-state 

parallel-series systems with equal load sharing among 

components of parallel subsystems in a case when the 

number of components in these subsystems is large 

were obtained by Smith [6]-[7]. Other results on limit 

reliability functions of two-state parallel-series systems 

in a case of the parallel-series system structure’s shape 

when the number of parallel subsystems is large were 

fixed by Harlow and Smith [8]. Some partial results on 

limit reliability functions in the first of these two cases 

for multi-state parallel-series systems can be found in 

my recent publications as well [1]-[2].   

 

2. Reliability of multi-state systems 

Taking into account the importance of the safety 

effectiveness of large systems it seems reasonable to 

consider the multi-state approach in their reliability 

analysis. The assumption that the systems are 

composed of multi-state components with reliability 

state degrading in time without repair gives the 

possibility for more precise analysis of their reliability 

and safety effectiveness. This assumption allows us to 

distinguish a system reliability critical state to exceed 

which is either dangerous for the environment or does 

not assure the required level of effectiveness of this 

system exploitation. Then, an important system 

reliability characteristic is the time to the moment of 

exceeding the system reliability critical state and its 

distribution, which is called the system risk function. 

This distribution is strictly related to the system multi-
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state reliability function that is a basic characteristic of 

the multi-state system. 

One of basic multi-state reliability structures with 

components degrading in time is parallel-series system. 

In the multi-state reliability analysis to define parallel-

series systems with degrading components we assume 

that: 

– Eij, ,,,2,1 nki   ,,,2,1 ilj   ,,,,, 21 nkn lll k   

,Nn  are components of a system, 

– all components and a system under consideration 

have the state set {0,1,...,z}, ,1z  

– the reliability states are ordered, the state 0 is the 

worst and the state z is the best, 

– the component and the system reliability states 

degrade with time t without repair, 

– Tij(u), ,,,2,1 nki  ,,,2,1 nlj  ,,,,, 21 nkn lllk   

,Nn  are independent random variables 

representing the lifetimes of components Eij in the 

state subset },,...,1,{ zuu   while they were in the 

state z at the moment t = 0, 

– T(u) is a random variable representing the lifetime 

of a system in the reliability state subset 

},,...,1,{ zuu   while it was in the reliability state z 

at the moment t = 0, 

– eij(t) are components Eij states at the moment t, 

),,0 t   

– s(t) is the system reliability state at the moment t, 

).,0 t   
 

Under above assumptions we introduce the following 

definition of multi-state reliability function of a 

component. 

 

Definition 1. A vector    

 

   Rij(t , ) = [Rij(t,0),Rij(t,1),...,Rij(t,z)], ),,( t   

 

where     

 

   Rij(t,u) = P(eij(t)  u  eij(0) = z) = P(Tij(u) > t),      (1) 

 

for ),,0 t  u = 0,1,...,z, i = 1,2,...,kn, j = 1,2,...,li, is 

the probability that the component Eij is in the 

reliability state subset },...,1,{ zuu   at the moment t, 

),,0 t  while it was in the reliability state z at the 

moment t = 0, is called the multi-state reliability 

function of a component Eij. 

It is clear from Definition 1, that Rij(t,0) = 1. 

 

Definition 2. A vector     

 

   )],(,),1,(),0,([),( ztttt
nnnnnnnn ,lk,lk,lk,lk

RRRR   

 

 

where   

 

   ))(())0(|)((),( tuTPzsutsPut 
nn ,lk

R    (2) 

 

for ),,0 t  u = 0,1,...,z, is the probability that the 

system is in the reliability state subset },...,1,{ zuu   at 

the moment t, ),,0 t  while it was in the reliability 

state z at the moment t = 0, is called the multi-state 

reliability function of a system.  

If 

 

   )],(,),1,(),0,([),( ztptptptp   for ),,0 t   

 

where 

 

   ))0(|)((),( zsutsPutp    

 

for ),,0 t  ,,,1,0 zu   is the probability that the 

system is in the state u at the moment t, ),,0 t  

while it was in the state z at the moment ,0t  then 

 

   ,1)0,( t
nn ,lk

R  ),,(),( ztpzt 
nn ,lk

R  ),,0 t     (3) 

 

and 

 

   )1,(),(),(  utututp
nnnn ,lk,lk

RR                       (4) 

 

for ),,0 t  .1,,1,0  zu    

 

Moreover, if 

 

   1),()( utm

nn l,k
R  for ,0t  ,,,1 zu   

 

then the mean lifetime of the system in the state subset 

},,1,{ zuu   is 

 

   ,),()(
0




dtutuM
nn ,lk

R  ,,,1 zu                        (5) 

 

and the standard deviation of the system sojourn time 

in the state subset },,1,{ zuu   is 

 

   ,)]([)()( 2uMuNu   ,,,1 zu                   (6) 

 

where 

 

   ,),(2)(
0




dtuttuN
nn ,lk

R  .,,1 zu                        (7) 
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Besides 

 

   ,),()(
0




dtutpuM  ,,,1 zu                               (8) 

 

is the mean lifetime of the system in the state u, while 

the integrals (5), (6) and (7) are convergent. Then, 

according to (3)-(5) and (7), we get the following 

relationship 

 

   ),1()()(  uMuMuM  ,1,,2,1  zu   

 

   ).()( zMzM                                                           (9) 

 

Definition 3. A probability 

 

   ),)(())0(|)(()( trTPzsrtsPt r  

 

that the system at the moment t, ),,0 t  is in the 

subset of states worse than the critical state r, 

},,,2,1{ zr   while it was In the state z at the 

moment 0t  is called a risk function of the multi-

state system. 

 Under this definition, from (1), we have 

 

   ),,(1))0(|)((1)( rtzsrtsPt
nn ,lk

Rr     (10) 

 

for ),( t  and moreover, if   is the moment 

when the risk exceeds a permitted level ,  ,1,0   

then 

 

   ),(1   r                                                            (11) 

 

where ),(1 t
r  if exists, is the inverse function of the 

risk function ).(tr  

 

2.1. Multi-state parallel-series systems  

Definition 4. A multi-state system is called parallel-

series if its lifetime T(u) in the state subset 

},...,1,{ zuu   is given by    

 

   )}},({max{min)(
11

uTuT ij
ljki in 

 .,,2,1 zu   

 

Definition 5. A multi-state parallel-series system is 

called homogeneous if its component lifetimes Tij(u) in 

the state subset have an identical distribution function 

 

   ),)((),( tuTPutF ij  ,,,2,1 zu  ,,,2,1 nki 
 

                                                             ,,,2,1 ilj   

 

i.e. if its components Eij have the same reliability 

function 

 

   ),,(1),( utFutR  .,,2,1 zu   

 

Definition 6. A multi-state parallel-series system is 

called regular if    

 

   ,21 nk llll
n
   ln  N, 

 

i.e. if the numbers of components in its parallel 

subsystems are equal. 

 

2.1.1. Parallel-series systems with independent 

components 

The results presented below can be found in [4]. 

 

Proposition 1.  If in a homogeneous regular multi-state 

parallel-series system 

 

(i) components failure independently, 

 

(ii) components have reliability functions ),(tR  

 
then the multi-state system reliability function is given 

by the formula 

 

   )],,(,),1,(,1[),( zttt
nnnnnn ,lk,lk,lk

RRR    

 

where 

 

   nn kl
tRut ])](1[1[),( 

nn ,lk
R  for ),,( t   

                                                 ,,,1 zu                          

where nk  is the number of its parallel subsystems 

linked in series and nl  is the number of components in 

each subsystem. 

In the case when components of a system have 

exponential reliability functions i.e. 

 

   )],,(,),1,(,1[),( ztRtRtR                                   (12) 

 

where  

 

   1),( utR  for ,0t  

 

   ])(exp[),( tuutR   for ,0t  ,0)( u            (13) 

 

then the multi-state system reliability function takes 

form 

 

   )],,(,),1,(,1[),( zttt
nnnnnn ,lk,lk,lk

RRR               (14) 
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where 

 

   1),( ut
nn ,lk

R  for ,0t                          

 

   nn kl
tuut ]]])(exp[1[1[),( 

nn ,lk
R                 (15) 

 

for ,0t  .,,1 zu                          

 

2.1.2. Parallel-series systems with dependent 

component failures 

A multi-state parallel-series system is in the reliability 

state subset },...,1,{ zuu   if all of its parallel 

subsystems are in this state subset. Taking into account 

this fact, a multi-state parallel-series system with 

dependent components is considered as a system of 

linked independently in series multi-state parallel 

subsystems composed of components with failure 

dependency. In each of these subsystems we assume 

the following model of failure dependency. After 

getting out of the reliability state subset },...,1,{ zuu   

,1,,2,1,0,  ilvv   of components in a subsystem the 

increased load is shared equally among others so as 

their load increase with the same scale. Then their 

reliability is getting worse so that the mean values of 

the i-th, ,,,2,1 nki   subsystem component lifetimes 

)(' uTij  in the state subset },...,1,{ zuu   are of the form 
 

   )],([)]([)]([)]('[ uTE
l

vl
uTE

l

v
uTEuTE ij

i

i
ij

i

ijij


   

 ,,,2,1 ilj  ,1,,2,1,0  ilv  .,,2,1 zu          (16) 

 

Then the rates of getting out from the reliability state 

subset },...,1,{ zuu   of remaining components of the 

i-th, ,,,2,1 nki   multi-state subsystem are given by  

 

   ),()()( u
l

vl
u

i

iv 


 ,1,,2,1,0  ilv                 (17) 

   .,,2,1 zu                  

 

Proposition 2. If in a homogeneous regular multi-state 

parallel-series system 

 

(i) components failure in dependent way according to 

(16), 

 

(ii) components have exponential reliability functions 

given by (12)-(13), 

 
then the multi-state system reliability function is given 

by the formula 

 

   )],,(,),1,(,1[),( zttt
nnnnnn ,lk,lk,lk

RRR               (18) 

 

where 

 

   1),( ut
nn ,lk

R  for ,0t                          

 

   

n

n

k
l

v
n

v
n tul

v

tul
ut












 




1

0

])(exp[
!

))((
),( 


nn ,lk

R   

 

for ,0t  .,,1 zu                                                 (19) 

 

3. Asymptotic approach 

The investigation of exact reliability functions of large 

systems often leads to complicated formulae. Thus, 

from practical point of view, the asymptotic approach 

to large systems reliability evaluation is very 

important. The suggested method allows us to obtain 

formulae that simplify optimising calculations.  

In the paper in the asymptotic approach to the 

reliability evaluation of multi-state parallel-series 

systems the linear standardization of their lifetimes in 

the reliability state subsets is used. This approach relies 

on an investigation of limit distribution of a 

standardized random variable ),(/))()(( uaubuT nn  

,,,2,1 zu   where )(uT  is the system lifetime in the 

state subset },,1,{ zuu   and ,0)( uan  

),,()( ubn  are called normalizing constants. For 

that reason, we assume the following definition [4]. 

Definition 7. A reliability function  

 

   )],,(,),1,(,1[),( zttt    ),,( t  

 

is called a multi-sate limit reliability function of a 

system with reliability function  

 

   )],,(,),1,(,1[),( zttt
nnnnnn ,lk,lk,lk

RRR   

 

 if there exist normalizing constants ,0)( uan   

),()( ubn  such as  

 

   ),()),()((lim utuubtua nn
n




nn ,lk
R  for ,)(uCt     

 

where )(uC  is the set of continuity points of 

),,( ut .,,2,1 zu   

 

From Definition 7 it follows that the knowledge the 

limit reliability function of a system ),( t  for 

sufficiently large n allows us to estimate the multi-state 
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reliability function of a system ),( t
nn ,lk

R  according 

the following approximate formula 
 

   ),),(/))(((),(  uaubtt nn
nn ,lk

R                      (20)
 

i.e.  

   )],(,),1,(,1[ ztt
nnnn ,lk,lk

RR   

 

   )],,
)(

)(
(,),1,

)1(

)1(
(,1[ z

za

zbt

a

bt

n

n

n

n 
   ).,( t  

 

3.1. Reliability evaluation of large parallel-

series systems with independent components 

In this point the possibilities of multi-state asymptotic 

approach to the reliability evaluation of large parallel-

series systems are presented. There are formulated two 

propositions that allow us to find multi-state limit 

reliability functions of homogeneous parallel-series 

systems with independent components under the 

assumption that they have exponential reliability 

functions.  

 

Proposition 3. If in a homogeneous regular multi-state 

parallel-series system  

 

(i) components failure independently, 

 

(ii) components have exponential reliability functions 

given by (12)-(13), 

 

(iii) ,nkn   ,log sncln   ,0c  ,0s  

 

(iv) ,
log)(

1
)(

nu
uan


  ,

log
log

)(

1
)(

n

l

u
ub n

n


   

,,,2,1 zu   

then 

 

   )],,(,),1,(,1[),( 333 zttt    ),,( t      (21) 

 

where 

 

   ]expexp[),(3 tut   for ,,,1 zu                  (22) 

 

is the multi-state limit reliability function of considered 

system. 

 

Proposition 4. If in a homogeneous regular multi-state 

parallel-series system  

 

(i) components failure independently, 

 

(ii) components have exponential reliability functions 

given by (12)-(13), 

 

(iii) ,kkn   ,0k  ,nl  

(iv) ,
)(

1
)(

u
uan


  ,

)(

log
)(

u

l
ub n

n


  ,,,2,1 zu   

 

then 

 

   )],,(,),1,(,1[),( 101010 zttt    ),,( t     

(23) 

where 

 

    ktut ]]exp[exp[1),(3   for ,,,1 zu    (24) 

 

is the multi-state limit reliability function of considered 

system. 

 

3.2. Reliability evaluation of large parallel-

series systems with dependent component 

failures 

The proofs of presented below propositions are given 

in [3]. 

 

Proposition 5. If in a homogeneous regular multi-state 

parallel-series system 

  

(i) components failure in dependent way according to 

(16), 

 

(ii) components have exponential reliability functions 

given by (12)-(13), 

 

(iii) ),( t
nn ,lk

R  is a multi-state system reliability 

function given by (18)-(19), 

 

(iv) kkn   = constant as ,n  

 

(v) ,nln   

 

(vi) ,
)(

1
)(

nu
uan


  

)(

1
)(

u
ubn


  for ,,,1 zu   

 

then 

 

   )],,(,),1,(,1[),( 222 zttt    ),,( t      (25) 

 

where 

 

   
k

N utFut )],(1[),( )1,0(2   for ,,,1 zu         (26) 
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and 

 

   ,]
2

exp[
2

1
),(

2

)1,0(  


t

N dt
t

utF


 ),,( t  

 

is the multi-state limit reliability function of considered 

system. 

According to Proposition 5 and by (20) we can get the 

approximate formula for the exact multi-state 

reliability function of the considered parallel-series 

system  

 

   )],,(,),1,(,1[),( zttt
nnnnnn ,lk,lk,lk

RRR                                  

 

where 

 

   ),
)(

)(
(),( 2 u

ua

ubt
ut

n

n


nn ,lk
R                             

 

   k
N untunF )],)((1[ )1,0(                             (27) 

 

for ),,( t  .,,1 zu   

 

Proposition 6. If in a homogeneous regular multi-state 

parallel-series system 

 

(i) components failure in dependent way according to 

(16), 

 

(ii) components have exponential reliability functions 

given by (12)-(13), 

 

(iii) ),( t
nn ,lk

R  is a multi-state system reliability 

function given by (18)-(19), 

 

(iv) nk  as ,n  

 

(v) ,nln   

 

(vi) 0log3
1




nkn  as ,n   

 

(vii) ,
log2)(

1
)(

n

n
knu

ua


  

 

)(

1

log8)(

log4loglog)4log(
)(

uknu

kk
ub

n

nn
n







  

 

                                                for ,,,2,1 zu   

then 

 

   )],,(,),1,(,1[),( 444 zttt    ),,( t     (28) 

 

where 

 

   ],expexp[),(4 tut  ,,,2,1 zu                     (29) 

 

is the multi-state limit reliability function of considered 

system. 

According to Proposition 6 and by (20) we can get the 

approximate formula for the exact multi-state 

reliability function of the considered parallel-series 

system  

 

   )],,(,),1,(,1[),( zttt
nnnnnn ,lk,lk,lk

RRR  ),,( t  

 

where 

 

   ),
)(

)(
(),( 4 u

ua

ubt
ut

n

n


nn ,lk
R  

 

   nkntu log2)1)(exp[(exp[    

 

   ]]log2loglog
2

1
)4log(

2

1
nn kk                     (30) 

 

for ),,( t .,,2,1 zu        

 

4. Application 

The obtained theoretical results can be applied to the 

reliability evaluation of real technical systems that are 

composed of large number of components with failure 

dependency. In this part, the ship-rope elevator used in 

the Naval Shipyard in Gdynia is considered and its 

reliability analysis is performed. The elevator is 

composed of a steel platform-carriage moved with 10 

rope-hoisting winches fed by separate electric motors. 

The exact and limit multi-state reliability functions, the 

mean values and standard deviations of this system 

lifetimes in the reliability state subsets, the mean 

values of the system lifetimes in particular reliability 

states and the system risk function are determined. 

In our further analysis we will discuss the reliability of 

the rope system only. The system under consideration 

is in order if all its ropes do not fail. Thus we may 

assume that it is a series system composed of 10 

components. Each of the ropes is composed of 22 

strands. According to rope reliability data given in 

their technical certificates and experts’ opinions [5] 

based on the nature of strand failures the following 

reliability states have been distinguished: 

state 3 – a strand is new, without any defects, 
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state 2 – the number of broken wires in the strand is 

greater than 0% and less than 25% of all its wires, or 

corrosion of wires is greater than 0% and less than 

25%, 

state 1 – the number of broken wires in the strand is 

greater than or equal to 25% and less than 50% of all 

its wires, or corrosion of wires is greater than or equal 

to 25% and less than 50%, 

state 0 – otherwise (a strand is failed). 

We consider the strands as basic components of the 

system. The system of ropes is in the reliability state 

subset },,...,1,{ zuu   ,3,2,1u  when all of its ropes 

are in this state subset and each of the ropes is in the 

reliability state subset },,...,1,{ zuu   ,3,2,1u  if at 

least one of 22 strands is in this state subset. Thus, 

according to Definition 6 we conclude that the rope 

elevator is a regular 4-states parallel-series system 

composed of kn = 10 series-linked subsystems (ropes) 

with ln = 22 parallel-linked components (strands). 

It has been assumed that the strands have exponential 

reliability functions: 

 

   )]3,(),2,(),1,(,1[),( tRtRtRtR   for ),,( t  

 

   1),( utR  for ,0t ,3,2,1u  

 

   ]1613.0exp[)1,( ttR  , ]2041.0exp[)2,( ttR  , 

 

   ]2326.0exp[)3,( ttR   for .0t  

 

4.1. The ship-rope elevator as a system with 

independent components 

Discussed in the paper the shipyard rope transportation 

system under the assumption that its components are 

independent is also widely described and analysed in 

[4].  

Applying Proposition 1 the exact multi-state reliability 

function of the elevator under the assumption that its 

components are independent is given by the formula  

 

   )],3,(),2,(),1,(,1[),( 22,1022,1022,1022,10 tttt RRRR   (31) 

 

where 

 

   )1,(22,10 tR ,]]]1613.0exp[1[1[ 1022t    

 

   )2,(22,10 tR ,]]]2041.0exp[1[1[ 1022t   

 

   )3,(22,10 tR ,]]]2326.0exp[1[1[ 1022t   

 

for ).,( t  

The expected values of the elevator lifetimes ),1(T  

),2(T  )3(T  in the state subsets },3,2,1{  },3,2{  }3{  and 

their standard deviations counted in years, according to 

(5)-(7), are: 

 

   ,434.13)1( M  ,617.10)2( M  ,316.9)3( M  

 

   ,106.2)1(   ,597.1)2(   .360.1)3(   

Hence, from (9), the elevator mean lifetimes in the 

particular states in years are 

 

   ,817.2)1( M  ,301.1)2( M  .316.9)3( M  

 

Assuming that a critical reliability state of the rope 

elevator is r = 2, then from (10) its risk function takes 

the following form  

 

   )2,(1)( 22,10 tt Rr    

 

          1022]]]2041.0exp[1[1[1 t , ).,( t  

 

The moment when the system risk exceeds the 

permitted level e.g. ,05.0  according to (11), is 

 

   9)(1    r  years and 212 days. 

 
Since the number of parallel subsystems in the system 

is 10nk  and the number of components in each 

subsystem is 22nl , then taking into account that 

,3.210loglog22  nn kl  it seems reasonable to 

apply in the elevator’s reliability evaluation either 

Proposition 2 or Proposition 3. First applying 

Proposition 2 we conclude that multi-state limit 

reliability function of the elevator is of the form 

 

   )],3,(),2,(),1,(,1[),( 22,1022,1022,1022,10 tttt RRRR   (32) 

 

where 

 

   )1,(22,10 tR ]],1969.53714.0exp[exp[  t     

 

   )2,(22,10 tR ]],1969.54699.0exp[exp[  t    

 

   )3,(22,10 tR ]],1970.55356.0exp[exp[  t     

 

for ).,( t  

 

The expected values of the elevator lifetimes ),1(T  

),2(T  )3(T  in the state subsets },3,2,1{  },3,2{  }3{  and 
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their standard deviations counted in years, according to 

(5)-(7), are: 

 

   ,453.12)1( M  ,843.9)2( M  ,636.8)3( M  

 

   ,199.3)1(   ,487.2)2(   .158.2)3(   

 

Hence, from (9), the elevator mean lifetimes in the 

particular states in years are 

 

   ,610.2)1( M  ,207.1)2( M  .636.8)3( M  

 

If a critical reliability state of the rope elevator is r = 2, 

then from (10) its risk function takes the following 

form 

  

   )2,(1)( 22,10 tt Rr   

 

   ]]1969.54699.0exp[exp[1  t , ).,( t  

 

The moment when the system risk exceeds the 

permitted level e.g. ,05.0  according to (11), is 

 

   6)(1    r  years. 

 

Next applying Proposition 3 we get 

 

   )],3,(),2,(),1,(,1[),( 22,1022,1022,1022,10 tttt RRRR   (33) 

 

where 

 

   )1,(22,10 tR ,]]]0911.31613.0exp[exp[1[ 10 t  

 

   )2,(22,10 tR ,]]]0910.32041.0exp[exp[1[ 10 t  

   

   )3,(22,10 tR ,]]]0911.32326.0exp[exp[1[ 10 t  

 

for ).,( t  

 

The expected values of the elevator lifetimes ),1(T  

),2(T  )3(T  in the state subsets },3,2,1{  },3,2{  }3{  and 

their standard deviations counted in years, according to 

(5)-(7), are: 

 

   ,027.13)1( M  ,295.10)2( M  ,034.9)3( M  

 

   ,300.2)1(   ,758.1)2(   .506.1)3(   

 

Hence, from (9), the elevator mean lifetimes in the 

particular states in years are 

 

   ,732.2)1( M  ,261.1)2( M  .034.9)3( M  

 

If a critical reliability state of the rope elevator is r = 2, 

then from (10) its risk function takes the following 

form  

 

   )2,(1)( 22,10 tt Rr   

 

          10]]]0910.32041.0exp[exp[1[1  t , 

 

for ).,( t  

 

The moment when the system risk exceeds the 

permitted level e.g. ,05.0  according to (11), is 

 

   8)(1    r  years 310 days. 

 

4.2. The ship-rope elevator as a system with 

dependent component failures 

From practical point of view it seems reasonable to 

consider the shipyard rope transportation system 

assuming components’ dependence. Indeed, while 

failing some of strands in a rope the load of the 

remaining not failed ones may be getting larger. Thus, 

the assumption about dependence of strands is natural 

and justified. 

After considering Proposition 4 the exact multi-state 

elevator reliability function is given by the formula  

 

   )],3,(),2,(),1,(,1[),( 22,1022,1022,1022,10 tttt RRRR   (34) 

 

where 

 

   1),(22,10 utR  for ,0t ,3,2,1u  

 

   )1,(22,10 tR ,]]5486.3exp[
!

)5486.3(
[ 10

21

0

 
j

j

t
j

t
       

 

   )2,(22,10 tR ,]]4902.4exp[
!

)4902.4(
[ 10

21

0

 
j

j

t
j

t
      

 

   )3,(22,10 tR ,]]1172.5exp[
!

)1172.5(
[ 10

21

0

 
j

j

t
j

t
       

 

for .0t  

 

The expected values of the elevator lifetimes ),1(T  

),2(T  )3(T  in the state subsets },3,2,1{  },3,2{  }3{  and 

their standard deviations, according to (5)-(7), in years 

are: 
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   ,335.4)1( M  ,426.3)2( M  ,006.3)3( M  

 

   ,773.0)1(   ,472.0)2(   .414.0)3(   

 

Hence, from (9), the elevator mean lifetimes in the 

particular states in years are 

 

   ,909.0)1( M  ,420.0)2( M  .006.3)3( M  

 

If a critical reliability state of the rope elevator is r = 2, 

then from (10) its risk function takes the following 

form  

 

   )2,(1)( 22,10 tt Rr   

 

         








 







.0,]]4902.4exp[
!

)4902.4(
[1

,0,0

10
21

0

t  t
j

t

t  

j

j   

 

The moment when the system risk exceeds the 

permitted level e.g. ,05.0  according to (11), is 

 

   2)(1    r  years and 230 days. 

 

In the asymptotic approach to the reliability evaluation 

of the rope elevator assuming component failure 

dependency similarly as in the first case we can apply 

either Proposition 5 or Proposition 6. Applying 

Proposition 5 we can find the approximate multi-state 

reliability function of the rope elevator system. 

 

   )],3,(),2,(),1,(,1[),( 22,1022,1022,1022,10 tttt RRRR   (35) 

 

where 

 

   )1,(22,10 tR ,)]6904.47566.0(1[ 10
)1,0(  tFN         

 

   )2,(22,10 tR ,)]6904.49573.0(1[ 10
)1,0(  tFN        

 

   )3,(22,10 tR ,)]6904.40901.1(1[ 10
)1,0(  tFN         

 

for ).,( t  

 

The expected values of the elevator lifetimes ),1(T  

),2(T  )3(T  in the state subsets },3,2,1{  },3,2{  }3{  and 

their standard deviations counted in years, according to 

(5)-(7), are: 

 

   ,166.4)1( M  ,292.3)2( M  ,891.2)3( M  

 

   ,776.0)1(   ,613.0)2(   .538.0)3(   

 

Hence, from (9), the elevator mean lifetimes in the 

particular states in years are 

 

   ,873.0)1( M  ,401.0)2( M  .891.2)3( M  

 

Assuming that a critical reliability state of the rope 

elevator is r = 2, then from (10) its risk function takes 

the following form  

 

   )2,(1)( 22,10 tt Rr    

 

   10
)1,0( )]6904.49573.0(1[1  tFN , ).,( t  

 

The moment when the system risk exceeds the 

permitted level assuming as before ,05.0  

according to (11), is 

 

   2)(1    r  years 80 days. 

 

Now the system multi-state reliability function is 

estimated from the formula (13) as an application of 

Proposition 6. 

 

   )],3,(),2,(),1,(,1[),( 22,1022,1022,1022,10 tttt RRRR   (36) 

 

where 

 

   )1,(22,10 tR 10log44)11613.0exp[(exp[  t                                   

 

                     )]],10log/50log(                     

 

   )2,(22,10 tR 10log44)12041.0exp[(exp[  t                                   

 

                     )]],10log/50log(                     

 

   )3,(22,10 tR 10log44)12326.0exp[(exp[  t                                   

 

                     )]],10log/50log(                     

 

for ).,( t  

 

The expected values of the elevator lifetimes ),1(T  

),2(T  )3(T  in the state subsets },3,2,1{  },3,2{  }3{  and 

their standard deviations, according to (5)-(7), in years 

are: 

 

   ,044.4)1( M  ,196.3)2( M  ,805.2)3( M  
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   ,787.0)1(   ,622.0)2(   .546.0)3(   

 

Hence, from (9), the elevator mean lifetimes in the 

particular states in years are 

 

   ,848.0)1( M  ,392.0)2( M  .805.2)3( M  

 

If a critical reliability state of the rope elevator is r = 2, 

then from (10) its risk function takes the following 

form  

 

   )2,(1)( 22,10 tt Rr   

 

         10log44)12041.0exp[(exp[1  t   

 

         )]]10log/50log(   for ).,( t  

 

The moment when the system risk exceeds the 

permitted level e.g. ,05.0  according to (11), is 

 

   2)(1    r  years and 11 days. 

 

Comparing the expected values of the elevator 

lifetimes in the state subset and the elevator mean 

lifetimes in the particular states in the case when 

strands failure in dependent and independent way we 

can conclude that these values are lower in the first 

case for about 68% percent for exact reliability 

functions and for about 67% and 69% for approximate 

reliability functions. 

The obtained results illustrate that the increased load of 

remaining un-failed components causes shortening the 

lifetime of these components in a significant way. That 

fact can be interpreted as a decrease of their reliability 

much faster then for the systems with independent 

components. Taking into account the presented ship-

rope elevator we can notice that the lifetime in the 

reliability state subset of the elevator under the 

assumption that strand failure in dependent way is even 

about 70% shorten then in the case when strands are 

independent.  

 

5. Conclusion 

In the paper the exact reliability analysis and 

asymptotic approach to the reliability evaluation of 

homogeneous multi-state parallel-series systems are 

presented. For these systems the exact and limit 

reliability functions and other characteristics both in 

the case when their components are independent and 

when they are dependent are determined under the 

assumption that components of systems have 

exponential reliability functions. 

Introduced in the paper the method of reliability 

evaluation of large systems relies on application of 

some approximate methods based on classical 

asymptotic approach to this issue. The obtained results 

are concerned with typical systems with regular 

structure. Applied in the paper analytical methods are 

successful rather for not very complex systems. In this 

background it seems to be justified the extension of 

this issue for systems with less regular structures and 

use of any other reliability analysis methods. 
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Appendix 
 
                                                                                                   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Figure 1. Graphs of the rope elevator exact and approximate reliability functions in the state subset u ≥ 1 

  a) in the case when components are independent             b) in the case when components fail dependently 
 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

  Figure 2. Graphs of the rope elevator exact and approximate reliability functions in the state subset u ≥ 2 

  a) in the case when components are independent             b) in the case when components fail dependently 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

  Figure 3. Graphs of the rope elevator exact and approximate reliability functions in the state subset u = 3 

  a) in the case when components are independent             b) in the case when components fail dependently 
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