PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Yield and Nutrients Leaf Content of Butterhead Lettuce (Lactuca Sativa) in Response to Fish Nutrient Solution in a Small Scale of Aquaponic Systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study was conducted over 52 days to evaluate the potential of using the nutrient solution produced from different fish stocking densities on the yield and nutrients leaf content of lettuce cultivated in decoupled recirculation aquaponic systems (DRAPS). In this study, three stocking densities of tilapia were used 8, 10 and 12 kg m-3, respectively. The result showed the highest total yield 448 g m-2 was obtained at a low stocking density. Also, it has been showing that with an increased fish stocking density, the leaf nutrient content of butterhead lettuce for potassium, calcium, magnesium, sodium, iron and copper was increased. While for the nitrogen, phosphorus and manganese, the higher leaf content was obtained at lower stocking density. Considering the lettuce yield, leaf nutrient contents and nitrogen dynamics, the stocking density of 8 kg m-3 could be suggested as the ideal stocking density for DRAPS.
Twórcy
  • Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
  • Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
  • Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
  • Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
  • Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
  • Department of Biological Sciences, Al-Hussein Bin Talal University, Maan, Jordan
Bibliografia
  • 1. Al Tawaha A.R., Megat Wahab P.E., binti Jaafar H., Kee Zuan A.T., Hassan M.Z. 2021. Effects of Fish Stocking Density on Water Quality, Growth Performance of Tilapia (Oreochromis niloticus) and Yield of Butterhead Lettuce (Lactuca sativa) Grown in Decoupled Recirculation Aquaponic Systems. Journal of Ecological Engineering, 22(1), 8–19. DOI:10.12911/22998993/128692
  • 2. Albornoz F. & Heinrich Lieth J. 2015. Over fertilization limits lettuce productivity because of osmotic stress. Chilean journal of agricultural research, 75(3), 284–290. DOI:10.4067/S0718-58392015000400003
  • 3. Al‐Hafedh Y.S., Alam A., Beltagi M.S., 2008. Food production and water conservation in a recirculating aquaponic system in Saudi Arabia at different ratios of fish feed to plants. Journal of the world aquaculture society, 39(4), 510–520. DOI:10.1111/j.1749-7345.2008.00181.x
  • 4. Anderson T.S., De Villiers D., Timmons M.B. 2017. Growth and tissue elemental composition response of butterhead lettuce (Lactuca sativa, cv. Flandria) to hydroponic and aquaponic conditions. Horticulturae, 3(3), 43. DOI:10.3390/horticulturae3030043
  • 5. De Kreij C., Sonneveld C., Warmenhoven M.G., Straver N.A. 1992. Guide values for nutrient element contents of vegetables and flowers under glass. Voedingsoplossingen glastuinbouw, 15, 1–59.
  • 6. Delaide B., Goddek S., Gott J., Soyeurt H., Jijakli M.H. 2016. Lettuce (Lactuca sativa L. var. Sucrine) growth performance in complemented aquaponic solution outperforms hydroponics. Water, 8(10), 467. DOI:10.3390/w8100467
  • 7. Diver S. 2006. Aquaponics-integration of hydroponics with aquaculture. National Center for Appropriate Technology (NCAT), Butte, p. 28.
  • 8. Effendi H., Amalrullah Utomo B., Maruto Darmawangsa G., Aprianti Hanafiah D. 2015. Wastewater treatment of freshwater crayfish (Cherax quadricarinatus) culture with lettuce (Lactuca sativa). Int J Appl Environ Sci., 10(1), 409–420.
  • 9. Effendi H., Utomo B.A., Pratiwi N.T. 2020. Ammonia and orthophosphate removal of tilapia cultivation wastewater with Vetiveria zizanioides. Journal of King Saud University-Science, 32(1), 207–212. DOI:10.1016/j.jksus.2018.04.018
  • 10. Effendi H., Wahyuningsih S., Wardiatno Y. 2017. The use of nile tilapia (Oreochromis niloticus) cultivation wastewater for the production of romaine lettuce (Lactuca sativa L. var. longifolia) in water recirculation system. Applied Water Science, 7(6), 3055–3063. DOI:10.1007/s13201-016-0418-z
  • 11. El-Sayed A.-F.M. Tilapia Culture; CABI Publishing: Oxfordshire, UK, 2006.
  • 12. Endut A., Jusoh A., Ali N., Nik W.W., Hassan A. 2010. A study on the optimal hydraulic loading rate and plant ratios in recirculation aquaponic system. Bioresource technology, 101(5), 1511–1517. DOI:10.1016/j.biortech.2009.09.040
  • 13. Fallovo C., Rouphael Y., Rea E., Battistelli A., Colla G. 2009. Nutrient solution concentration and growing season affect yield and quality of Lactuca sativa L. var. acephala in floating raft culture. Journal of the Science of Food and Agriculture, 89(10), 1682–1689. DOI:10.1002/jsfa.3641
  • 14. Goddek S., Espinal C. A., Delaide B., Jijakli M.H., Schmautz Z., Wuertz S., Keesman K.J. 2016. Navigating towards decoupled aquaponic systems: A system dynamics design approach. Water, 8(7), 303. DOI:10.3390/W8070303
  • 15. Graber A. & Junge R. 2009. Aquaponic Systems: Nutrient recycling from fish wastewater by vegetable production. Desalination, 246(1–3), 147–156. DOI:10.1016/j.desal.2008.03.048
  • 16. Johnson G.E., Buzby K.M., Semmens K.J., Holaskova I., Waterland N.L. 2017. Evaluation of lettuce between spring water, hydroponic, and flow-through aquaponic systems. International Journal of Vegetable Science, 23(5), 456–470. DOI:10.1080/19315260.2017.1319888
  • 17. Kloas W., Groß R., Baganz D., Graupner J., Monsees H., Schmidt U., Staaks G., Suhl J., Tschirner M., Wittstock B., Wuertz S. 2015. A new concept for aquaponic systems to improve sustainability, increase productivity, and reduce environmental impacts. Aquaculture Environment Interactions 7(2), 179–192. DOI:10.3354/aei00146
  • 18. Licamele J. 2009. Biomass production and nutrient dynamics in an aquaponics system. PhD thesis. Department of Agriculture and biosystems engineering, University of Arizona.
  • 19. Love D.C., Fry J.P., Li X., Hill E.S., Genello L., Semmens K., Thompson R.E. 2015. Commercial aquaponics production and profitability: Findings from an international survey. Aquaculture. 435. 67–74. DOI:10.1016/j.aquaculture.2014.09.023
  • 20. Madar Á.K., Rubóczki T., Hájos M.T. 2019. Lettuce production in aquaponic and hydroponic systems. Acta Universitatis Sapientiae, Agriculture and Environment, 11(1), 51–59. DOI:10.2478/ausae-2019-0005
  • 21. Maucieri C., Nicoletto C., Zanin G., Birolo M., Trocino A., Sambo P., Borin M., Xiccato G. 2019. Effect of stocking density of fish on water quality and growth performance of European Carp and leafy vegetables in a low-tech aquaponic system. PLoS ONE 14(5): e0217561. DOI:10.1371/journal.pone.0217561
  • 22. Monsees H., Suhl J., Paul M., Kloas W., Dannehl D., Würtz S. 2019. Lettuce (Lactuca sativa, variety Salanova) production in decoupled aquaponic systems: Same yield and similar quality as in conventional hydroponic systems but drastically reduced greenhouse gas emissions by saving inorganic fertilizer. PLoS ONE 14(6): e0218368. DOI:10.1371/journal.pone.0218368
  • 23. Nozzi V., Graber A., Schmautz Z., Mathis A., Junge R. 2018. Nutrient management in aquaponics: comparison of three approaches for cultivating lettuce, mint and mushroom herb. Agronomy, 8(3), 27. DOI:10.3390/agronomy8030027
  • 24. Pantanella E., Cardarelli M., Colla G., Rea E., Marcucci A. 2010. August. Aquaponics vs. hydroponics: production and quality of lettuce crop. In XXVIII International Horticultural Congress on Science and Horticulture for People (IHC2010): International Symposium on 927, 887–893.
  • 25. Rakocy J.E. 2012. Aquaponics: integrating fish and plant culture. Aquaculture production systems, 1, 344–386. DOI:10.1002/9781118250105.ch14
  • 26. Rakocy J. 2007. Ten Guidelines for Aquaponic Systems. Aquaponics Journal, 46, 14–17. http://santarosa.ifas.ufl.edu/wp-content/uploads/2013/06/Aquaponics-Journal-10-Guidelines.pdf
  • 27. Rakocy J.E., Masser M.P., Losordo T.M. 2006. Recirculating aquaculture tank production systems: aquaponics–integrating fish and plant culture. SRAC publication, 454, 1–16.
  • 28. Sala F.C. & da Costa C.P. 2012. Retrospective and trends of Brazilian lettuce crop. Horticultura Brasileira, 30(2), 187–194. DOI:10.1590/S0102-05362012000200002
  • 29. Schmautz Z., Graber A., Jaenicke S., Goesmann A., Junge R., Smits T.H. 2017. Microbial diversity in different compartments of an aquaponics system. Archives of microbiology, 199(4), 613–620. DOI:10.1007/s00203-016-1334-1
  • 30. Somerville C., Cohen M., Pantanella E., Stankus A., Lovatelli A. 2014. Small-scale aquaponic food production. Integrated fish and plant farming. FAO Fisheries and Aquaculture Technical Paper, FAO, Rome, 589, 262.
  • 31. Spiller S. & Terry N. 1980. Limiting factors in photosynthesis: II. Iron stress diminishes photochemical capacity by reducing the number of photosynthetic units. Plant Physiology, 65(1), 121–125. DOI:10.1104/pp.65.1.121
  • 32. Tyson R.V. Treadwell D.D., Simonne E.H. 2011. Opportunities and challenges to sustainability in aquaponic systems. HortTechnology, 21(1), 6–13. DOI:10.21273/HORTTECH.21.1.6
  • 33. Wahyuningsih S., Effendi H., Wardiatno Y. 2015. Nitrogen removal of aquaculture wastewater in aquaponic recirculation system. Aquaculture, Aquarium, Conservation & Legislation, 8(4), 491–499.
  • 34. Windsor G., Adams P. 1987. Diagnosis of mineral disorders in plants. Glasshouse Crops. Her Majesty’s Stationery Office, London, UK, 3.
  • 35. Wongkiew S., Hu Z., Chandran K., Lee J.W., Khanal S.K 2017. Nitrogen transformations in aquaponic systems: A review. Aquacultural Engineering, 76, 9–19. DOI:10.1016/j.aquaeng.2017.01.004
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-98245b42-b043-4467-bd3a-6f886e673974
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.