PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Structural characterization of low-carbon multiphase steels merging advanced research methods with light optical microscopy

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents new approach to characterizing low-carbon multiphase steels structure by means of concurrent application of optical and scanning electron microscopy with the emphasis on the latter one. Limitations of optical microscopy in material structure analysis, and the possibilities of information interchange between both methods have been discussed. The microstructure characterization is mostly based on the results obtained by means of scanning electron microscopy with wide application of EBSD method. As part of the work, fundamental constituents of multiphase steels structure with particular focus on consideration of the possibility of influencing their morphological features during thermal treatment have been systematized and described. Referring to the sheets of TRIP 700 and DP 600 steel, a capability of combining the FEG SEM analysis with EBSD method to characterize their structure was presented. EBSD method enables not only distinction of phases of various crystalline structure. Owing to analysis of parameters such as IQ, FIT, CI, KAM and misorientation angle, it is possible to differentiate constituents having different crystal structure. The method of IQ distribution curve deconvolution allows estimation of the fraction of structure constituents representing the same crystal structure. Existence of characteristic ranges of misorientation angles for selected structure constituents was proven.
Rocznik
Strony
282--293
Opis fizyczny
Bibliogr. 26 poz., rys., tab., wykr.
Twórcy
  • Instytut Metalurgii Zelaza, Gliwice, Poland
Bibliografia
  • [1] R. Kuziak, R. Kawalla, S. Waengler, Advanced high strength steels for automotive industry, Archives of Civil and Mechanical Engineering 8 (2) (2008) 103–117.
  • [2] L. Madej, L. Sieradzki, M. Sitko, K. Perzynski, K. Radwanski, R. Kuziak, Multi scale cellular automata and finite element based model for cold deformation and annealing of a ferritic-pearlitic microstructure, Computational Materials Science 77 (2013) 172–181.
  • [3] J. Zhang, H. Di, Y. Deng, R.D.K. Misra, Effect of martensite morphology and volume fraction on strain hardening and fracture behavior of martensite-ferrite dual phase steel, Materials Science and Engineering A 627 (2015) 230–240.
  • [4] A. Grajcar, R. Kuziak, W. Zalecki, Third generation of AHSS with increased fraction of retained austenite for automotive industry, Archives of Civil and Mechanical Engineering 12 (3) (2012) 334–341.
  • [5] J. Qu, W. Dabboussi, F. Hassani, J.A. Nemes, S. Yue, Effect of microstructure and chemical composition on dynamic factor of high strength steels, Materials Science and Technology 24 (2008) 957–963.
  • [6] M. Belde, H. Springer, G. Inden, D. Raabe, Multiphase microstructures via confined precipitation and dissolution of vessel phases: example of austenite in martensitic steel, Acta Materialia 86 (2015) 1–14.
  • [7] M. Pietrzyk, R. Kuziak, K. Radwański, D. Szeliga, Physical and numerical simulation of the continuous annealing of DP steel strips, Steel Research International 85 (1) (2014) 99–111.
  • [8] F.S. LePera, Improved etching technique for the determination of percent martensite in high-strength dual-phase steels, Metallography 12 (1979) 263–268.
  • [9] S. Zajac, V. Schwinn, K.H. Tacke, Characterisation and quantification of complex bainitic microstructure in high and ultra-high strength linepipe steels, Materials Science Forum 500–501 (2005) 387–394.
  • [10] R.O. Rocha, T.M.F. Melo, E.V. Pereloma, D.B. Santos, Microstructural evolution at the initial stages of continuous annealing of cold rolled dual-phase steel, Materials Science and Engineering A 391 (2005) 296–304.
  • [11] A.F. Gourgues, H.M. Flower, T.C. Lindley, Electron backscattering diffraction study of acicular ferrite, bainite, and martensite steel microstructures, Materials Science and Technology 16 (1) (2000) 26–40.
  • [12] R. Kuziak, V. Pidvysotskyy, S. Węglarczyk, M. Pietrzyk, Bainitic steels as alternative for conventional carbon- manganese steels in manufacturing of fasteners – simulation of production chain, Computer Methods in Material Science 11 (2011) 443–462.
  • [13] S. Zaefferer, J. Ohlert, W. Bleck, A study of microstructure, transformation mechanisms and correlation between microstructure and mechanical properties of a low alloyed TRIP steel, Acta Materialia 52 (2004) 2765–2778.
  • [14] R. Petrov, L. Kestens, Y. Houbaert, Microstructure and microtexture evolution of a TRIP-assisted steel after small deformation studied by EBSD technique, Materials Science Forum 550 (2007) 265–270.
  • [15] J. Tarasiuk, Ph. Gerber, B. Bacroix, Estimation of recrystallized volume fraction from EBSD data, Acta Materialia 50 (2002) 1467–1477.
  • [16] A. Grajcar, K. Radwański, Microstructural comparison of the thermomechanically treated and cold deformed Nb-microalloyed TRIP steel, Materiali in Tehnologije 48 (5) (2014) 679–683.
  • [17] J. Wu, P.J. Wray, C.I. Garcia, M. Hua, A.J. Deardo, Image quality analysis. A new method of characterizing microstructures, ISIJ International 45 (2) (2005) 254–262.
  • [18] S.I. Wright, M.M. Nowell, EBSD image quality mapping, Microscopy and Microanalysis 12 (2006) 72–84.
  • [19] K. Radwański, Application of FEG-SEM and EBSD methods for the analysis of the restoration processes occurring during continuous annealing of dual-phase steel strips, Steel Research International 86 (2015) 1379–1390. , http://dx.doi. org/10.1002/srin.201400361.
  • [20] D.P. Field, Recent advances in the application of orientation imaging, Ultramicroscopy 67 (1997) 1–9.
  • [21] M.M. Nowell, R.A. Witt, B.W. True, EBSD sample preparation: techniques, tips, and tricks, Microscopy Today (2005) 44–48.
  • [22] EDAX-TSL, OIM5.3 Manual, 2007.
  • [23] OIM Academy Tilburg Course Manual, EDAX Ametek Materials Analysis Division, Tilburg, 2009.
  • [24] N. Allain-Bonasso, F. Wagner, S. Berbennie, D.P. Field, A study of the heterogeneity of plastic deformation in IF steel by EBSD, Materials Science and Engineering A 548 (2012) 56–63.
  • [25] K. Radwański, A. Wrożyna, R. Kuziak, Role of the advanced microstructures characterization in modeling of mechanical properties of AHSS steels, Materials Science and Engineering A 639 (2015) 567–574.
  • [26] S. Zajac, J. Komenda, P. Morris, P. Dierickx, S. Matera, F. Penalba Diaz, Quantitative structure-property relationship for complex bainitic microstructures, Report EUR 21245EN, Technical Steel Research, European Commission, Luxembourgh, 2005.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-98214270-e0f4-41d9-b0de-82b61c2874ab
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.