Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Sodium lignosulfonate (SL) was prepared from waste of cotton lignin (CL) through hydrothermal reaction method. Orthogonal experiment was designed with value of OIT as objective function. Polypropylene (PP) is a polymer produced by the addition polymerization of propylene. It is a white waxy material with a transparent and light appearance, which is widely used in food and pharmaceutical packaging. The results of GPC and TG analysis revealed that SL has stable thermal properties, which means that SL has the potential to be an antioxidant for PP materials. In addition, the scavenging effects of CL and SL were studied. The obtained results exhibited that the SL can obviously increase the scavenging effect on free radicals and it is a kind of new synthetic antioxidant with antioxidant property, which could effectively delay the oxidation of PP. Subsequent rheological experiments proved that the SL/PP sample can improve the heat-resistant oxygen performance of PP under the thermal oxygen shearing environment. Combined with the effect of SL on the mechanical properties of PP before aging, SL has a stabilizing effect on PP thermal oxygen aging.
Czasopismo
Rocznik
Tom
Strony
56--66
Opis fizyczny
Bibliogr 38 poz., rys., tab.
Twórcy
autor
- Xinjiang University, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uyghur Autonomous Region, College of Chemistry and Chemical Engineering, Urumqi, 830046, China
autor
- Xinjiang University, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uyghur Autonomous Region, College of Chemistry and Chemical Engineering, Urumqi, 830046, China
autor
- Xinjiang University, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uyghur Autonomous Region, College of Chemistry and Chemical Engineering, Urumqi, 830046, China
autor
- Xinjiang University, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uyghur Autonomous Region, College of Chemistry and Chemical Engineering, Urumqi, 830046, China
Bibliografia
- 1. Boone, J., Lox, F. & Pottie, S. (1993). Deficiencies of polypropylene in its use as a food-packaging material – a review. Packaging Technol. Sci. 6(5), 277–281. DOI: 10.1002/pts.2770060508.
- 2. Bati, B., Celik, I. & Dogan, A. (2014). Determination of hepatoprotective and antioxidant role of walnuts against ethanol-induced oxidative stress in rats. Cell Biochem. Biophys. 71(2), 1191–1198. DOI: 10.1007/s12013-014-0328-3.
- 3. Lee, M.C.I., Velayutham, M., Komatsu, T., Hille, R. & Zweier, J.L. (2014). Measurement and characterization of superoxide generation from xanthine dehydrogenase: a redox-regulated pathway of radical generation in ischemic tissues. Biochem. 53(41), 6615–6623. DOI: 10.1021/bi500582r.
- 4. Valko, M., Leibfritz, D., Moncol, J., Cronin, M.T., Mazur, M. & Telser, J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 39(1), 0–84. DOI: 10.1016/j.biocel.2006.07.001.
- 5. Finkel, T. & Holbrook, N.J. (2000). Oxidants, oxidative stress and the biology of ageing. Nature 408(6809), 239–247. DOI: 10.1038/35041687.
- 6. Kamal-Eldin, A. & Appelqvist, LA. (1996). The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids 31(7), 671–701. DOI: 10.1007/bf02522884.
- 7. Shogren, R.L. & Biswas, A. (2013). Preparation of starch–sodium lignosulfonate graft copolymers via laccase catalysis and characterization of antioxidant activity. Carbohydr. Polym. 91(2), 581–585. DOI: 10.1016/j.carbpol.2012.08.079.
- 8. Trinh, L.T.P., Lee, Y.J., Lee, J.W., Bae, H.J. & Lee, H.J. (2013). Recovery of an ionic liquid [BMIM]Cl from a hydrolysate of lignocellulosic biomass using electrodialysis. Separ. Purifi c. Technol. 120, 86–91. DOI: 10.1016/j.seppur.2013.09.025.
- 9. Wang, X., Zhou, J.H., Li, H.M. & Sun, G.W. (2013). Depolymerization of lignin with supercritical fluids: a review. Adv. Mater. Res. 821–822, 1126–1134. DOI: 10.4028/www.scientifi c.net/AMR.821-822.1126.
- 10. Xue, Y., Luan, Q., Yang, D., Yao, X. & Zhou, K. (2011). Direct evidence for hydroxyl radical scavenging activity of cerium oxide nanoparticles. J. Phys. Chem. C. 115(11), 4433–4438. DOI: 10.1021/jp109819u.
- 11. Chioua, M., Sucunza, D., Soriano, E., Hadjipavlou-Litina, D., Alcázar, A., Ayuso, I., Oset-Gasque, M.J., González, M.P., Monjas, L., Rodríguez-Franco, M.I., Marco-Contelles, J. & Samadi, A. (2012) α-Aryl-N-alkyl Nitrones, as potential agents for stroke treatment: Synthesis, theoretical calculations, antioxidant, anti-inflammatory, neuroprotective, and brain-blood barrier permeability properties. J. Med. Chem. 55(1), 153–168. DOI: 10.1021/jm201105a.
- 12. Okawa, M., Kinjo, J., Nohara, T. & Ono, M. (2001). DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging activity of flavonoids obtained from some medicinal plants. Biol. Pharmac. Bull. 24(10), 1202–1205. DOI: 10.1016/S0925-9635(97)00165-9.
- 13. Nenadis, N. & Tsimidou, M. (2002). Observations on the estimation of scavenging activity of phenolic compounds using rapid 1,1-diphenyl-2-picrylhydrazyl (DPPH•) tests. J. Amer. Oil Chemists’ Soc. 79(12), 1191–1195. DOI: 10.1007/s11746-002-0626-z.
- 14. Aoshima, H., Tsunoue, H., Koda, H. & Kiso, Y. (2004). Aging of whiskey increases 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity. J. Agric. Food Chem. 52(16), 5240–5244. DOI: 10.1021/jf049817s.
- 15. Sendra, J.M., Sentandreu, E. & Navarro, J. L. (2006). Reduction kinetics of the free stable radical 2,2-diphenyl1-picrylhydrazyl (DPPH) for determination of the antiradical activity of citrus juices. Europ. Food Res. Technol. 223(5),
- 615–624. DOI: 10.1007/s00217-005-0243-3.
- 16. Yue-Jun, H.E., Yong-De, Y. & Feng, T. (2009). Detection of antioxidative capacity of essential oils from the bamboo leaves by scavenging organic free radical DPPH. J. Anhui Agric. Univ. 36(3), 408–412. DOI: 10.1016/j.elecom.2008.10.019.
- 17. Su-Hua, G., Md, Y.F. & Peng, L. S. (2010). A comparison of the antioxidant properties and total phenolic content in a diatom, chaetoceros sp. and a green microalga, nannochloropsis sp. J. Agric. Sci. 2(3). DOI: 10.5539/jas.v2n3p123.
- 18. Apak, R., Gorinstein, S., Bohm, V., Schaich, K.M., Ozyurek, M. & Guclu, K. (2013). Methods of measurement and evaluation of natural antioxidant capacity/activity (IUPAC Technical Report). Chem. Internat. – IUPAC. 35(3). DOI: 10.1515/ci.2013.35.3.22a.
- 19. Ding & Hsiou-Yu. (2011). Extracts and constituents of rubus chingii with 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity. Internat. J. Molec. Sci. 12(12), 3941–3949. DOI: 10.3390/ijms12063941.
- 20. Bell, J.C.L. (1982). Determination of floc sizes in kaolin suspensions dispersed by sodium lignosulphonate. Colloids & Surfaces 5(4), 285–299. DOI: 10.1016/0166-6622(82)80041-3.
- 21. Chung, S.Y., Han, S.H., Lee, S.W. & Rhee, C. (2012). Effect of maillard reaction products prepared from glucose–glycine model systems on starch digestibility. Starch – Strke 64(8), 0–0. DOI: 10.1002/star.201100176.
- 22. Gülçin. I. (2006). Antioxidant activity of caffeic acid (3,4-dihydroxycinnamic acid). Toxicology 217(2–3), 213–220. DOI: 10.1016/j.tox.2005.09.011.
- 23. Walling, C. & Buckler, S.A. (1955). The reaction of xygen with organometallic compounds. a new synthesis of hydroperoxides. J. Amer. Chem. Soc. 77(22), 59–63. DOI: 10.1021/ja01627a069.
- 24. Gentile, G., Ambrogi, V., Cerruti, P., Di Maio, R., Nasi, G. & Carfagna, C. (2014). Pros and cons of melt annealing on the properties of?mwcnt/polypropylene composites. Polym. Degrad. & Stability. 110, 56–64. DOI: 10.1016/j.polymdegradstab.2014.08.018.
- 25. Thornberry, T., Carroll, M.A., Keeler, G.J., Sillman, S., Bertman, S.B. & Pippin, M.R. (2001). Observations of reactive oxidized nitrogen and speciation of no y, during the prophet summer 1998 intensive. J. Geophys. Res. Atmosph. 106(D20), 24359–24386. DOI: 10.1029/2000JD900760.
- 26. Wang, Z., Qin, W.Z., Bao, S., Chen, X., Zhang, F.L., & Li, D.S. (2013). The influences of aerobic and anaerobic conditions on PHB and glycerin yields in the process of lignin degradation by pseudomonas stutzeri p156. Adv. Mater. Res. 634–638, 1170–1174. DOI: 10.4028/www.scientifi c.net/AMR.634-638.1170.
- 27. Dizhbite, T., Telysheva, G., Jurkjane, V. & Viesturs, U.(2004). Characterization of the radical scavenging activity of lignins–natural antioxidants. Biores. Technol. 95(3), 309–317. DOI: 10.1016/j.biortech.2004.02.024.
- 28. Fraga, C.G., Galleano, M., Verstraeten, S.V. & Oteiza, P.I. (2010). Basic biochemical mechanisms behind the health benefits of polyphenols. Molec. Aspects Med. 31(6), 0–445. DOI: 10.1016/j.mam.2010.09.006.
- 29. Liu, Y., Hu, T., Wu, Z., Zeng, G., Huang, D. & Shen, . (2014). Study on biodegradation process of lignin by FTIR and DSC. Environ. Sci. & Pollut. Res. 21(24), 14004–14013. DOI: 10.1007/s11356-014-3342-5.
- 30. Lambert, J.B., Gronert, S., Shurvell, HF., Lightner, D. Cooks, R.G. & Pearson. (2006). Organic structural spectroscopy: pearson new international edition. J. Labelled Compounds. 44(S1), S826–S828. DOI: 10.2514/6.2006-6905.
- 31. Xu, H., Yu, G., Mu, X., Zhang, C., Deroussel, P. & Liu, C. (2015). Effect and characterization of sodium lignosulfonate on alkali pretreatment for enhancing enzymatic saccharifi cation of corn stover. Ind. Crops & Products. 76, 638–646. DOI: 10.1016/j.indcrop.2015.07.057.
- 32. Sadeghifar, H. & Argyropoulos, D.S. (2015). Correlations of the antioxidant properties of softwood kraft lignin fractions with the thermal stability of its blends with polyethylene. ACS Sustainable Chem. & Engin. 3(2), 349–356. DOI: 10.1021/sc500756n.
- 33. Zhao, M.J., Jung, L., Tanielian, C. & Mechin, R. (1994). Kinetics of the competitive degradation of deoxyribose and other biomolecules by hydroxyl radicals produced by the fenton reaction. Free Rad. Res. 20(6), 345–363. DOI: 10.3109/10715769409145635.
- 34. Silva, D. & Gabriel. (2012). Reaction of methacrolein with the hydroxyl radical in air: incorporation of secondary O\r, 2\r, addition into the MACR + OH master equation. J. Phys. Chem. A. 116(22), 5317–5324. DOI: 10.1021/jp303806w.
- 35. Kang, S., Chang, J. & Fan, J. (2015). Phenolic antioxidant production by hydrothermal liquefaction of lignin. Energy Sourc., Part A: Recov., Utilizat., Environ. Effects. 37(5), 494–500. DOI: 10.1080/15567036.2011.585386.
- 36. Li, Z. & Ge, Y. (2012). Antioxidant activities of lignin extracted from sugarcane bagasse via different chemical procedures. Inter. J. Biol. Macromol. 51(5). DOI: 10.1016/j.ijbiomac.2012.09.004.
- 37. Yoshinori, K. & Seiichiro, F. (2011). Radical-scavenging activity of dietary phytophenols in combination with co-antioxidants using the induction period method. Molecules 16(12), 10457–10470. DOI: 10.3390/molecules161210457.
- 38. Alvarez-Suarez, J., Tulipani, S., Romandini, S., Vidal, A. & Battino, M. (2009). Methodological aspects about determination of phenolic compounds and in vitro evaluation of antioxidant capacity in the honey: a review. Current Anal. Chem. 5(4), 293–302. DOI: 10.2174/157341109789077768.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9820c9c6-a16f-495a-956e-480644a2fb84