PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A dislocation density-based model for the work hardening and softening behaviors upon stress reversal

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The mechanical behaviours of microalloyed and low-carbon steels under strain reversal were modelled based on the average dislocation density taking into account its allocation between the cell walls and cell interiors. The proposed model reflects the effects of the dislocations displacement, generation of new dislocations and their annihilation during the metal-forming processes. The back stress is assumed as one of the internal variables. The value of the initial dislocation density was calculated using two different computational methods, i.e. the first one based on the dislocation density tensor and the second one based on the strain gradient model. The proposed methods of calculating the dislocation density were subjected to a comparative analysis. For the microstructural analysis, the high-resolution electron backscatter diffraction (EBSD) microscopy was utilized. The calculation results were compared with the results of forward/reverse torsion tests. As a result, good effectiveness of the applied computational methodology was demonstrated. Finally, the analysis of dislocation distributions as an effect of the strain path change was performed.
Rocznik
Strony
721--731
Opis fizyczny
Bibliogr. 26 poz., rys., wykr.
Twórcy
  • Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków, Poland
  • Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków, Poland
autor
  • Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków, Poland
  • Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • [1] Bartolomé R, Jorge-Badiola D, Astiazarán IJ, Gutiérrez I. Flow stress behaviour, static recrystallisation and precipitation kinetics in a Nb-microalloyed steel after a strain reversal. Mater Sci Eng A. 2003;344:340.
  • [2] Muszka K, Sitko M, Lisiecka Graca P, Simm T, Palmiere E, Schmidtchen M, Korpala G, Wang J, Madej L. Experimental and numerical study of the effects of the reversal hot rolling conditions on the recrystallization behavior of austenite model alloys. Metals. 2021;11(1):26.
  • [3] Muszka K, Hodgson PD, Majta J. A physical based modeling approach for the dynamic behavior of ultrafine grained structures. J Mater Proc Technol. 2006;177:456–60.
  • [4] Motto NF, Nabarro FN. An attempt to estimate the degree of precipitation hardening, with a simple model. Proc Phys Soc B. 1940;52:86–9.
  • [5] Kocks UF, Mecking H. Physics and phenomenology of strain hardening: the FCC case. Prog Mater Sci. 2003;48:171–273.
  • [6] Estrin Y, Mecking H. A unified phenomenological description of work hardening and creep based on one-parameter models. Acta Metall. 1984;32:57–70.
  • [7] Estrin Y, Toth LS, Molinari A, Brechet Y. A dislocation based model for all hardening stages in large strain deformation. Acta Mater. 1998;46:5509–22.
  • [8] Nes E. Modelling of work hardening and stress saturation in FCC metals. Prog Mater Sci. 1998;41:129–93.
  • [9] Roters F, Raabe D, Gottstein G. Work hardening in heterogeneous alloys-a microstructural approach based on three internal state variables. Acta Mater. 2000;48:4181–9.
  • [10] Muszka K, Majta J, Kwiecień M, Lisiecka-Graca P, Bzowski K, Madej L. Experimental and numerical investigation of the rolling process of HSLA steel. AIP Conf Proc. 2019;2113:040023. https:// doi. org/ 10. 1063/1. 51125 57.
  • [11] Bergström Y. Dislocation model for the stress-strain behaviour of polycrystalline alpha-iron with special emphasis on the variation of the densities of mobile and immobile dislocations. Mater Sci Eng. 1970;5(4):193–200.
  • [12] Bergström Y, Hallen H. An improved dislocation model for the stress–strain behavior of polycrystalline alpha-iron. Mater Sci Eng. 1982;55(1):49.
  • [13] Hu Z, Rauch ER, Teodosiu T. Work-hardening behavior of mild steel under stress reversal at large strains. Int J Plast. 1992;8:839–56.
  • [14] Calcagnotto M, Ponge D, Demir E, Raabe D. Orientation gradients and geometrically necessary dislocations in ultrafine grained dual- phase steels studied by 2D and 3D EBSD. Mater Sci Eng A. 2010;527:2738–46.
  • [15] Ruggles TJ, Fullwood DT. Estimations of bulk geometrically necessary dislocation density using high resolution EBSD. Ultramicroscopy. 2013;133:8–15.
  • [16] Field DP, Trivedi PB, Wright SI, Kumar M. Analysis of local orientation gradients in deformed single crystals. Ultramicroscopy. 2005;103:1633–9.
  • [17] Pantleon W. Resolving the geometrically necessary dislocation content by conventional electron backscattering diffraction. Scr Mater. 2008;58(11):994–7.
  • [18] Gao H, Huang Y, Nix WD, Hutchinson JW. Mechanism-based strain gradient plasticity- I. Theory. J Mech Phys Solids. 1999;47:1239–63.
  • [19] Kubin LP, Mortensen A. Geometrically necessary dislocations and strain-gradient plasticity: a few critical issues. Scripta Mater. 2003;48:119–25.
  • [20] Rauch EF, Gracio JJ, Barlat F. Work-hardening model for poly-crystalline metals under strain reversal at large strains. Acta Mater. 2007;55:2939–48.
  • [21] Mecking H, Kocks UF. Kinetics of flow and strain-hardening. Acta Metall. 1981;29:1865–75.
  • [22] Toth LS, Molinari A, Estrin Y. Strain hardening at large strains as predicted by dislocation based polycrystal plasticity model. J Eng Mater-T ASME. 2002;124:71.
  • [23] Ashby MF. The deformation of plastically non-homogeneous materials. Philos Mag. 1970;21:399–424.
  • [24] Majta J, Muszka K, Madej L, Kwiecień M, Graca P. Study of the effects of micro- and nano-layered structures on mechanical response of microalloyed steels. Manuf Sci Technol. 2015;3:134–40.
  • [25] Barraclough DR, Whittaker HJ, Nair KD, Sellars CM. Effect of specimen geometry on hot torsion test results for solid and tubular specimens. J Test Eval. 1973;1:220.
  • [26] Rauch EF, Schmitt JH. Dislocation substructures in mild steel deformed in simple shear. Mater Sci Eng A. 1989;113:441.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-981edc3c-1610-4bd6-b063-c10144219727
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.