PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Estimation of UFMC Fading Channels Using H∞ Filter

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Universal filtered multi-carrier (UFMC) modulation is a very powerful candidate to be employed for future 5G mobile systems. It overcomes the limitations and restrictions in current modulation techniques employed in 4G mobile systems and supports future applications, such as machineto-machine (M2M), device-to-device (D2D), and vehicle-tovehicle (V2V) communications. In this paper, we address the estimation of UFMC fading channels based on the comb-type pilot arrangement in the frequency domain. The basic solution is to estimate the fading channel based on the mean square error (MSE) or least square (LS) criteria with adaptive implementation using least mean square (LMS) or recursive least square (RLS) algorithms. However, these adaptive filters seem not to be effective, as they cannot fully exploit fading channel statistics, particularly at high Doppler rates. To take advantage of these statistics, time-variations of the fading channel are modeled by an autoregressive process (AR), and are tracked by an H∞ filter. This, however, requires that AR model parameters be known, which are estimated by solving the Yule-Walker equation (YWE), based on the Bessel autocorrelation function (ACF) of the fading channel with a known Doppler rate. Results of Matlab simulations show that the proposed H∞ filter-based channel estimator is more effective when compared with existing estimators.
Rocznik
Tom
Strony
28--35
Opis fizyczny
Bibliogr. 41 poz., rys., tab.
Twórcy
autor
  • Department of Electronic and Communication Engineering, Al-Quds University Jerusalem, Palestine
Bibliografia
  • [1] Y. G. Li and G. L. Stüber, Eds., “Orthogonal Frequency DivisionMultiplexing for Wireless Communications”. Springer, 2006 (ISBN 978-0-387-29095-9).
  • [2] K. K. Baum, B. Classon, and Ph. Sartori, “Principles of Broadband OFDM Cellular System Design”. Wiley, 2008 (ISBN: 9780470516379).
  • [3] B. Farhang-Boroujeny, “OFDM versus filter bank multicarrier", IEEE Signal Process. Mag., vol. 28, no. 3, pp. 92-112, 2011 (DOI: 10.1109/MSP.2011.940267).
  • [4] H. H. Zhang, D. Le Ruyet, D. Roviras, Y. Medjahdi, and H. Sun, “Spectral efficiency comparison of OFDM/FBMC for uplink cognitive radio networks", EURASIP J. on Adv. in Signal Process., Article no. 621808, 2010 (DOI: 10.1155/2010/621808).
  • [5] T. T. Lin and F. H. Hwang, On the CFO/Channel estimation technique for MIMO-OFDM systems without using a prior knowledge of channel length", EURASIP J. on Wirel. Commun. Network., Article no. 79, 2015 (DOI: 10.1186/s13638-015-0318-1).
  • [6] K. Anoh, C. Tanriover, B. Adebisi, and M. Hammoudeh, “A new approach to iterative clipping and filtering PAPR reduction scheme for OFDM systems", IEEE Access, vol. 6, pp. 17533-17544, 2018 (DOI: 10.1109/ACCESS.2017.2751620).
  • [7] F. Hu, “Opportunities in 5G Networks: A Research and Development Perspective”. Boca Raton, FL, USA: CRC Press, 2016 (ISBN: 9781498739542).
  • [8] Y. Liu et al., "Waveform design for 5G networks: Analysis and comparison", IEEE Access, vol. 5, pp. 19282-19292, 2017 (DOI: 10.1109/ACCESS.2017.2664980).
  • [9] M. Addad and A. Djebbari, “Suitable spreading sequences for asynchronous MC-CDMA systems", J. of Telecommun. and Inform. Tech nol., no. 3, pp. 9-13, 2018 (DOI: 10.26636/jtit.2018.118217).
  • [10] R. Nissel, S. Schwarz, and M. Rupp, “Filter bank multicarrier modulation schemes for future mobile communications", IEEE J. Selec. Areas in Commun., vol. 35, no. 8, pp. 1768-1782, 2017 (DOI: 10.1109/JSAC.2017.2710022).
  • [11] G. Wunder et al., “5GNOW: non-orthogonal, asynchronous waveforms for future mobile applications," IEEE Commun. Mag., vol. 52, no. 2, pp. 97-105, 2014 (DOI: 10.1109/MCOM.2014.6736749).
  • [12] F. Schaich and T. Wild, “Waveform contenders for 5G-OFDM vs. FBMC vs. UFMC", in Proc. of the IEEE Int. Symp. on Commun., Control and Sig. Process. ISCCSP 2014, Athens, Greece, 2014, pp. 457-460 (DOI: 10.1109/ISCCSP.2014.6877912).
  • [13] R. Gerzaguet et al., “The 5G candidate waveform race: a comparison of complexity and performance", EURASIP J. on Wirel. Commun. and Network., Article no. 13, 2017 (DOI: 10.1186/s13638-016-0792-0).
  • [14] G. G. Fettweis, M. Krondorf, and S. Bittner, “GFDM-generalized frequency division multiplexing", in Proc. IEEE 69th Veh. Technol. Conf. VTC Spring 2009, Barcelona, Spain, 2009 (DOI: 10.1109/VETECS.2009.5073571).
  • [15] V. Vakilian, T. Wild, F. Schaich, S. ten Brink, and J.-F. Frigon, „Universal-filtered multi-carrier technique for wireless systems beyond LTE", in Proc. IEEE Globecom Workshops GC Wkshps 2013, Atlanta, GA, USA, 2013, pp. 223-228 (DOI: 10.1109/GLOCOMW.2013.6824990).
  • [16] F. F. Schaich, T. Wild, and Y. Chen, “Waveform contenders for 5G-suitability for short packet and low latency transmissions", in Proc. IEEE 79th Veh. Technol. Conf. VTC Spring 2014, Seoul, South Korea, 2014 (DOI: 10.1109/VTCSpring.2014.7023145).
  • [17] Y. Chen, T. Wild, and F. Schaich, “5G air interface design based on universal Filtered (UF-)OFDM", in Proc. 19th Int. Conf. on Digit. Sig. Process., Hong Kong, China, 2014, pp. 699-704 (DOI: 10.1109/ICDSP.2014.6900754).
  • [18] G. Kongara, L. Yang, C. He, and J. Armstrong, “A comparison of CP-OFDM, PCC-OFDM and UFMC for 5G uplink communications", IEEE Access, vol. 7, pp. 157574-157594, 2019 (DOI: 10.1109/ACCESS.2019.2949792).
  • [19] X. Wang, T. Wild, F. Schaich, and S. ten Brink, “Pilot-aided channel estimation for universal filtered multi-carrier", in Proc. IEEE Veh. Technol. Conf. VTC2015-Fall 2016, Boston, MA, USA, 2015 (DOI: 10.1109/VTCFall.2015.7391089).
  • [20] K. Zerhouni, F. Elbahhar, R. Elassali, and K. Elbaamrani, “Performance of universal filtered multicarrier channel estimation with different pilots arrangements", in Proc. IEEE 5G World Forum 5GWF 2018, Silicon Valley, CA, USA, 2018, pp. 327-332 (DOI: 10.1109/5GWF.2018.8517030).
  • [21] R. Wang, J. Cai, X. Yu, and S. Duan, “Compressive channel estimation for universal filtered multi-carrier system in high-speed scenarios", IET Commun. vol. 11, no. 15, pp. 2274-2281, 2017 (DOI: 10.1049/iet-com.2017.0308).
  • [22] M. K. Ozdemir and H. Arslan, “Channel estimation for wireless OFDM systems", IEEE Commun. Surv. & Tutor., vol. 9, no. 2, pp. 18-48, 2007 (DOI: 10.1109/COMST.2007.382406).
  • [23] Y. Liu, Z. Tan, H. Hu, L. J. Cimini, and Y. G. Li, “Channel estimation for OFDM", IEEE Commun. Surv. & Tutor., vol. 16, no. 4, pp. 189-1908, 2014 (DOI: 10.1109/COMST.2014.2320074).
  • [24] S. Park, B. Shim, and J. Choi, “Iterative channel estimation using virtual pilot signals for MIMO-OFDM systems", IEEE Trans. on Sig. Process., vol. 63, no. 12, pp. 3032-3045, 2015 (DOI: 10.1109/TSP.2015.2416684).
  • [25] J. Lin, “Least-squares channel estimation for mobile OFDM communication on time-varying frequency-selective fading channels", IEEE Trans. on Veh. Technol., vol. 57, no. 6, pp. 3538-3550, 2008 (DOI: 10.1109/TVT.2008.919611).
  • [26] M. Aldababseh and A. Jamoos, “Estimation of FBMC/OQAM fading channels using dual Kalman filters", The Scientific World J., Article no. 586403, pp. 1-9, 2014 (DOI: 10.1155/2014/586403).
  • [27] E. Kofidis, D. Katselis, A. Rontogiannis, and S. Theodoridis, “Preamble-based channel estimation in OFDM/OQAM systems: A review", Signal Process., vol. 93, no. 7, pp. 2038-2054, 2013 (10.1016/j.sigpro.2013.01.013).
  • [28] O. E. Ijiga, O. O. Ogundile, A. D. Familua, and D. J. Versfeld, “Review of channel estimation for candidate waveforms of next generation networks", Electronics, vol. 8, no. 9, 2019 (DOI: 10.3390/electronics8090956).
  • [29] C.-W. Chen and F. Maehara, “An enhanced MMSE subchannel decision feedback equalizer with ICI suppression for FBMC/OQAM systems", in Proc. Int. Conf. on Comput., Network. and Commun. ICNC 2017, Santa Clara, CA, USA, 2017, pp. 1041-1045 (DOI: 10.1109/ICCNC.2017.7876278).
  • [30] L. Zhang, A. Ijaz, P. Xiao, M. A. Imran, and R. Tafazolli, “MUUFMC system performance analysis and optimal filter length and zero padding length design" [Online]. Available: http://arxiv.org/pdf/1603.09169v1.pdf
  • [31] X.Wang, “Channel estimation and equalization for 5G wireless communication systems", Master Thesis, University of Stuttgart, 2014 [Online]. Available: https://www.researchgate.net/ publication/273574825 Channel Estimation and Equalization for 5G Wireless Communication Systems
  • [32] L. Zhang, C. He, J. Mao, A. Ijaz, and P. Xiao, “Channel estimation and optimal pilot signals for universal filtered multi-carrier (UFMC) systems", in Proc. of the IEEE 28th Ann. Int. Symp. on Personal, Indoor, and Mob. Radio Commun. PIMRC 2017, Montreal, QC, Canada, 2017 (DOI: 10.1109/PIMRC.2017.8292777).
  • [33] A. Jamoos and M. Hussein, “Estimation of UFMC time-varying fading channel using adaptive filters", in Proc. of the IEEE Int. Conf. on Promis. Electron. Technol. ICPET 2018, Deir El-Balah, Palestinian Authority, 2018, pp. 43-48 (DOI: 10.1109/ICPET.2018.00014).
  • [34] A. Jamoos, E. Grivel, N. Shakarneh, and H. A. Nour, “Dual optimal filters for parameter estimation of a multivariate AR process from noisy observations", IET Signal Process., vol. 5, no. 5, pp. 471-479, 2011 (DOI: 10.1049/iet-spr.2010.0066).
  • [35] J. G. Sekar and S. Sankarappan, “Enhanced channel estimation and performance analysis using H-infinity filter for MIMO-orthogonal frequency division multiplexing systems", J. of Comp. Sci., vol. 11, no. 2, pp. 400-405, 2015 (DOI: 10.3844/jcssp.2015.400.405).
  • [36] B. Belgacem and S. Lamir, “Optimal distributed power control in wireless cellular network based on mixed Kalman/H∞ filtering", AEU Int. J. of Electron. and Commun., vol. 90, pp. 103-109, 2018 (DOI: 10.1016/j.aeue.2018.04.016).
  • [37] A. Jamoos, E. Grivel, N. Christov, and M. Najim, Estimation of autoregressive fading channels based on two cross-coupled H∞ filters", Signal, Image and Video Process. J., vol. 3, no. 3, pp. 209-216, 2009 (DOI: 10.1007/s11760-008-0096-x).
  • [38] A. Jamoos, A. Abdo, H. A. Nour, and E. Grivel, “Two cross-coupled H∞ filters for fading channel estimation in OFDM systems", in Novel Algorithms and Techniques in Telecommunications and Networking, Tarek Sobh, Khaled Elleithy, and Ausif Mahmood, Eds. Dordrecht: Springer, 2010, pp. 349-353 (DOI: 10.1007/978-90-481-3662-9 60).
  • [39] G. Bochechka, V. Tikhvinskiy, I. Vorozhishchev, A. Aitmagambetov, and B. Nurgozhin, “Comparative analysis of UFMC technology in 5G networks", in Proc. Int. Siberian Conf. on Control and Commun. SIBCON 2017, Astana, Kazakhstan, 2017 (DOI: 10.1109/SIBCON.2017.7998465).
  • [40] K. E. Baddour and N. C. Beaulieu, “Autoregressive modeling for fading channel simulation", IEEE Trans. on Wirel. Commun., vol. 4, no. 4, pp. 1650-1662, 2005 (DOI: 10.1109/TWC.2005.850327).
  • [41] A. H. El Husseini, L. Ros, and E. P. Simon, “Second-order autoregressive model-based Kalman filter for the estimation of a slow fading channel described by the Clarke model: Optimal tuning and interpretation", Elsevier Digit. Signal Process., vol. 90, pp. 125-141, 2019 (DOI: 10.1016/j.dsp.2019.04.008).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9816dc73-e16e-417a-80e6-4064f10f23da
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.