PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Classification of tactile event-related potential elicited by Braille display for brain-computer interface

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To construct brain–computer interface (BCI), an event-related potential (ERP) induced by a tactile stimulus is investigated in this paper. For ERP-based BCI, visual or auditory information is frequently used as the stimulus. In the present study, we focus on tactile sensations to reserve their visual and auditory senses for other activities. Several patterns of mechanical tactile stimulation were applied to the index fingers of both hands using two piezo actuators that were used as a braille display. Human experiments based on the oddball paradigm were carried out. Subjects were instructed to pay attention to unusual target stimuli while avoiding other frequent non-target stimuli. The extracted features were classified by applying stepwise linear discriminant analysis. As a result, an accuracy of 85% and 60% were obtained for 2- and 4-class classification, respectively. The accuracy was improved by increasing the number of electrodes even when short stimulus intervals were used.
Twórcy
autor
  • Department of Biocybernetics, 8050 Ikarashi-2, Nishi-Ku, Niigata 950-2181, Japan
autor
  • Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan; JFE Techno-Research Corporation, Tokyo 100-0011, Japan
Bibliografia
  • [1] He B. Neural Engineering. 2nd ed. New York: Springer; 2005.
  • [2] Squires NK, Squires KC, Hillyard SA. Two varieties of long-latency positive waves evoked by unpredictable auditory stimuli in man. Electroencephalogr Clin Neurophysiol 1975;38(4):387–401.
  • [3] Farwell LA, Donchin E. Talking off the top of your head: a mental prosthesis utilizing event-related brain potentials. Electroencephalogr Clin Neurophysiol 1988;70:510–23.
  • [4] Sellers EW, Donchin E. A P300-based brain–computer interface: initial tests by ALS patients. Clin Neurophysiol 2006;117:538–48.
  • [5] Furdea A, Halder S, Krusienski DJ, Bross D, Nijboer F, Birbaumer N, et al. An auditory oddball (P300) spelling system for brain–computer interfaces. Psychophysiology 2009;46:617–25.
  • [6] Schreuder M, Blankertz B, Tangermann M. A new auditory multi-class brain–computer interface paradigm: spatial hearing as an informative cue. PLOS ONE 2010;5(4). art. E9813.
  • [7] Satomi K, Horai T, Kinoshita Y, Wakazono A. Hemispheric asymmetry of event-related potentials in a patient with callosal disconnection syndrome: a comparison of auditory, visual and somatosensory modalities. Electroencephalogr Clin Neurophysiol 1995;94:440–9.
  • [8] Nakajima Y, Imamura N. Relationships between attention effects and intensity effects on the cognitive N140 and P300 components of somatosensory ERPs. Clin Neurophysiol 2000;111:1711–8.
  • [9] Hori J, Kishi T. Objective evaluation of somatic sensation for mechanical stimuli by means of cortical dipole layer imaging. Proc of 33th Annual International Conference of IEEE EMBS. 2011. pp. 7021–4.
  • [10] Hori J, Kishi T, Kon R. Analysis of somatosensory evoked potential for mechanical stimuli mapped on realistic-shaped cortical surface. IEEJ Trans Electronics Inf Systems 2013;133(1):169–76.
  • [11] Chatterjee A, AggarwalV, Ramos A, Acharya S, Thakor NV. A brain–computer interface with vibrotactile biofeedback for haptic information. J Neuroeng Rehabi 2007;4. art. 40.
  • [12] Cincotti F, Kauhanen L, Aloise F, Palomäki T, Caporusso N, Jylänki P, et al. Vibrotactile feedback for brain–computer interface operation. Comput Intell Neurosci 2007. art. 48937.
  • [13] Brouwer AM, Van Erp JBF. A tactile P300 brain–computer interface. Frontiers in Neuroscience 2010. 4: art. 19.
  • [14] Wilska A. On the vibrational sensitivity in different regions of the body surface. Acta Physiol Scand 1954;31:285–9.
  • [15] Müller-Putz GR, Scherer R, Neuper C, Pfurtscheller G. Steady-state somatosensory evoked potentials: suitable brain signals for brain–computer interfaces? IEEE Trans Neural Syst Rehabil Eng 2006;14:30–7.
  • [16] Van der Waal M, Severens M, Geuze J, Desain P. Introducing the tactile speller: an ERP-based brain–computer interface for communication. J Neural Eng 2012;9(4). art. 45002.
  • [17] Severens M, Farquhar J, Duysens J, Desain P. A multi- signature brain–computer interface: use of transient and steady-state responses. J Neural Eng 2013;10(2). art. 26005.
  • [18] Severens M, Van der Waal M, Farquhar J, Desain P. Comparing tactile and visual gaze-independent brain– computer interfaces in patients with amyotrophic lateral sclerosis and healthy users. Clin Neurophysiol 2014;125 (11):2297–304.
  • [19] Hori J. Brain–computer interface based on somatosensory evoked potential using braille display. Proc of 37th Annual International Conference of IEEE EMBS; 2015.
  • [20] Krusienski DJ, Sellers EW, McFarland DJ, Vaughan TM, Wolpaw JR. Toward enhanced P300 speller performance. Neurosci Methods 2008;167(1):15–21.
  • [21] Krusienski DJ, Sellers EW, Cabestaing F, Bayoudh S, McFarland DJ, Vaughan TM, et al. A comparison of classification techniques for the P300 speller. Neural Eng 2006;3(4):299–305.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-98165a40-643a-4a79-850b-4e2534ca49bb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.