PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Determining parameters to optimize the pulling force for the luffing jib tower cranes by Taguchi method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The presented problem consists in optimizing the pulling force of the luffing jib tower cranes, in order to reduce power and save energy by determining reasonable geometrical parameters such as placement of pulley assemblies, position of jib pin, and jib length. To determine the optimal parameters, a mechanical model was developed to calculate the pulling force of the research object. Then, the Taguchi method and Minitab software were applied to evaluate the influence of the parameters. The objective function was the minimum pulling force of the luffing jib. The calculation results show that the position of the pulley assembly used to pull the jib is the most influential factor on the objective function accounting for 81.15%, the less significant factors are the jib length, the pin position of the jib, and the pulley assembly that changes the direction of the load lifting cable. The result of the test presented in the article allowed for determining the rational parameters, and the optimal position of the pulley assemblies on the top of the crane. In the case of the pulley assembly located at the top of the crane, one obtains the optimal height of the crane head H≈0.4 L c.
Rocznik
Tom
Strony
387--407
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
  • Faculty of Mechanical Engineering, Hanoi University of Civil Engineering, Hanoi, Vietnam
Bibliografia
  • [1] H. Hyun, M. Park, D. Lee, and J.Lee. Tower crane location optimization for heavy unit lifting in high-rise modular construction. Buildings, 11(3):121, 2021. doi: 10.3390/buildings11030121.
  • [2] T.G. Duong. Research on fundamental calculation of tower cranes examining into the elastic deflections of tower bod. Journal of Science and Technology in Civil Engineering, 11(4):139–144, 2017. https://stce.huce.edu.vn/index.php/vn/article/view/652.
  • [3] T.G. Duong. Selecting control method of hydraulic resistances in hydraulic system for tower crane climbing mechanism. Journal of Science and Technology in Civil Engineering,14(3V):140–148, 2020. doi: 10.31814/stce.nuce2020-14(3V)-13.
  • [4] B. Li, L. Lei, and B. Liu. Research of tower crane suspended climb supporting system. Applied Mechanics and Materials, 130-134:1889–1893, 2012. doi: 10.4028/www.scientific.net/AMM.130-134.1889.
  • [5] S. Chwastek. Optimization of crane mechanisms to reduce vibration. Automation in Construction, 119:103335, 2020. doi: 10.1016/j.autcon.2020.103335.
  • [6] S. Chwastek. Finding the globally optimal correlation of cranes drive mechanisms. Mechanics Based Design of Structures and Machines, 51(6):3230–3241, 2023. doi: 10.1080/15397734.2021.1920978.
  • [7] Y. Xue, M.S. Ji, N. Wu, Y. Xue, and W. Wang. The dimensionless-parameter robust optimization method based on geometric approach of pulley block compensation in luffing mechanism. In: Proceedings of the 2015 International Conference of Electrical, Automation and Mechanical Engineering, pages 157–160, Atlantis Press 2015. doi: 10.2991/eame-15.2015.43.
  • [8] X. Li. Truss structure optimum design and its engineering application. Computers \amp; Structures, 36(3): 567–573, 1990. doi: 10.1016/0045-7949(90)90291-9.
  • [9] R. Šelmić, P. Cvetković, R. Mijailović, and G. Kastratović. Optimum dimensions of triangular cross-section in lattice structures. Meccanica, 41:391–406, 2006. doi: 10.1007/s11012-005-5337-2.
  • [10] R. Mijailović and G. Kastratović. Cross-section optimization of tower crane lattice boom. Meccanica, 44:599–611,2009. doi: 10.1007/s11012-009-9204-4.
  • [11] J. Wang, L. Li, and L. Hao. APDL-based optimization of the boom of luffing jib tower cranes. Advanced Materials Research, 291-294:2566–2573, 2011. doi: 10.4028/www.scientific.net/AMR.291-294.2566.
  • [12] Q. Wu, Q. Zhou, X. Xiong and R. Zhang. Periodic topology and size optimization design of tower crane boom. International Scholarly and Scientific Research \amp; Innovation, 11(8), 2017. doi: 10.5281/zenodo.1131629.
  • [13] X-L. Cheng, H-L. Yang, and B. Zhu. Structure lightweight design of luffing jib tower crane jib. Machine Tool \amp; Hydraulics, 46(18): 81–86,99, 2018. doi: href="https://doi.org/10.3969/j.issn.1001-3881.2018.18.012">10.3969/j.issn.1001-3881.2018.18.012.
  • [14] D.S. Kim and J. Lee. Structural design of a level-luffing crane through trajectory optimization and strength-based size optimization. Structural and Multidisciplinary Optimization, 51: 515–531, 2015. doi: 10.1007/s00158-014-1139-2.
  • [15] Q. Jiao, Y. Qin, Y. Han, and J. Gu. Modeling and optimization of pulling point position of luffing jib on portal crane. Mathematical Problems in Engineering, 2021: 4627257, 2021. doi: 10.1155/2021/4627257.
  • [16] FEM 1.001: Rules for the Design of Hoisting Appliances (3rd Edition Revised 1998.10.01).
  • [17] R.V. Rao and V.J. Savsani. Mechanical Design Optimization Using Advanced Optimization Techniques. Springer, 2012.
  • [18] A. Arunkumar, S. Ramabalan, and D. Elayaraja. Optimum design of stair-climbing robots using Taguchi method. Intelligent Automation\amp; Soft Computing, 35(1):1229–1244, 2023. doi: 10.32604/iasc.2023.027388.
  • [19] M. Milos, I. Lozica, P. Nenad, and K. Nenad. Determination of the most influential factor during the rope winding process around winch drums using Taguchi method. 8th Iinternational Conference on Tribology, pages 794-798, 2014, Sinaia, Romania.
  • [20] P.J. Gamez-Montero, and E. Bernat-Maso. Taguchi techniques as an effective simulation-based strategy in the design of numerical simulations to assess contact stress in gerotor pumps. Energies, 15(19):7138, 2022. doi: 10.3390/en15197138.
  • [21] D-C. Chen, C-S. You, F-L. Nian, and M-W. Guo. Using the Taguchi method and finite element method to analyze a robust new design for titanium alloy prick hole extrusion, Procedia Engineering, 10:82–87, 2011. doi: 10.1016/j.proeng.2011.04.016.
  • [22] H-J. Chen, H-C. Lin, C-W .Tang. Application of the Taguchi method for optimizing the process parameters of producing controlled low-strength materials by using dimension stone sludge and lightweight aggregates. Sustainability, 13(10):5576, 2021. doi: 10.3390/su13105576.
  • [23] R. Barea, S. Novoa, F. Herrera, B. Achiaga, and N. Candela. A geometrical robust design using the Taguchi method: application to a fatigue analysis of a right angle bracket. DYNA, 85(205):37–46, 2018. doi: 10.15446/dyna.v85n205.67547.
  • [24] T. G. Duong. Instructions Manual for Calculating the Lifting Machine. Construction Publisher, Hanoi, Vietnam, 2019.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9815f4d6-f2c2-4382-ad92-cac95bddf2c3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.