Tytuł artykułu
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study investigates the flow and hemodynamics of small perforator blood vessels that branch from the basilar artery (BA) in the brain. Using advanced imaging techniques and computational fluid dynamics (CFD) simulations, detailed 3D geometries of the perforators were acquired through barium contrast injection, micro-CT scans, and data processing. The hybrid geometry, combining micro-CT scans and mesh extraction algorithms, provided accurate vessel models. The influence of different types of finite volume on the analysis was examined, with polyhedral elements showing the most efficient ratio of the analysis time to convergence level. Additionally, the effect of boundary conditions on hemodynamic parameters was studied. Simulations using 0.0 mmHg pressure conditions at the outlets directed flow mainly through the BA, neglecting the perforator branches. In contrast, non-zero outlet pressure conditions significantly increased the flow in the perforators, leading to nonphysiological flow velocities and overestimation of hemodynamic parameters. The assumption of pressure conditions of 0 mmHg at outlets was found to be valid for simple single vessel geometries, but not for more complex vascular systems. This research contributes valuable information on the complex flow patterns and hemodynamics of small perforator blood vessels in the brain and emphasizes the importance of accurately modeling geometry and boundary conditions in such studies.
Wydawca
Czasopismo
Rocznik
Tom
Strony
341--357
Opis fizyczny
Bibliogr. 118 poz., rys., tab., wykr.
Twórcy
autor
- Military University of Technology, Faculty of Mechanical Engineering, Institute of Mechanics and Computational Engineering, 2 gen. S. Kaliskiego Street 00-908, Warsaw, Poland
autor
- Military University of Technology, Faculty of Mechanical Engineering, Institute of Mechanics and Computational Engineering, 2 gen. S. Kaliskiego Street 00-908, Warsaw, Poland
autor
- Medical University of Warsaw, Department of Descriptive and Clinical Anatomy, 5 Chałubińskiego Street 02-004, Warsaw, Poland
autor
- Military University of Technology, Faculty of Mechanical Engineering, Institute of Mechanics and Computational Engineering, 2 gen. S. Kaliskiego Street 00-908, Warsaw, Poland
autor
- Medical University of Warsaw, Department of Descriptive and Clinical Anatomy, 5 Chałubińskiego Street 02-004, Warsaw, Poland
Bibliografia
- [1] Prince M, Bryce R, Albanese E, Wimo A, Ribeiro W, Ferri CP. The global prevalence of dementia: A systematic review and metaanalysis. Alzheimer’s & Dementia 2013;9:63-75.e2. https://doi.org/10.1016/J.JALZ.2012.11.007.
- [2] Schaeffer S, Iadecola C. Revisiting the neurovascular unit. Nature Neuroscience 2021 24:9 2021;24:1198-209. https://doi.org/10.1038/s41593-021-00904-7.
- [3] Wei W, Ma D, Li L, Zhang L. Cognitive impairment in cerebral small vessel disease induced by hypertension. Neural Regen Res 2023;19:1454-62. https://doi.org/10.4103/1673-5374.385841.
- [4] Markus HS. Cerebral small vessel disease: Microbleeds, perforator artery imaging and cliostozol. Int J Stroke 2021;16:1000-1. https://doi.org/10.1177/ 17474930211062814.
- [5] Vogels V, Dammers R, Van Bilsen M, Volovici V. Deep cerebral perforators: anatomical distribution and clinical symptoms: An overview. Stroke 2021;52: E660-74. https://doi.org/10.1161/STROKEAHA.120.034096.
- [6] Bahr M, Frotscher M (Michael), Duus P. Duus’ topical diagnosis in neurology : anatomy, physiology, signs, symptoms. Georg Thieme; 2012.
- [7] Chojdak-Łukasiewicz J, Dziadkowiak E, Zimny A, Paradowski B. Cerebral small vessel disease: A review. Adv Clin Exp Med 2021;30:349-56. https://doi.org/10.17219/ACEM/131216.
- [8] Techasrisaksakul K, Sriamornrattanakul K, Akharathammachote N, Chonhenchob A, Mongkolratnan A, Ariyaprakai C. Microsurgical partial trapping for the treatment of unclippable vertebral artery aneurysms: Experience from 27 patients and review of literature. World Neurosurg: X 2024;21:100256. https://doi.org/10.1016/j.wnsx.2023.100256.
- [9] Hassan F, Abdel A, Osman L, Issa AS. Deconstructive endovascular technique for dissecting posterior cerebral artery aneurysms : A single - center case series study. Egypt J Radiol Nucl Med 2024. https://doi.org/10.1186/s43055-024-01186-2.
- [10] Kwiatkowska M, Rzepliński R, Ciszek B. Anatomy of the pontine arteries and perforators of the basilar artery in humans. J Anat 2023:997-1006. https://doi.org/10.1111/joa.13927.
- [11] Tyfa Z, Obidowski D, Jóźwik K, Tyfa Z, Obidowski D, Jóźwik K. Numerical analysis of the VAD outflow cannula positioning on the blood flow in the patient-specific brain supplying arteries. MME 2020;22:619-36. https://doi.org/ 10.2478/MME-2018-0049.
- [12] Piechna A, Cieślicki K. Influence of hydrodynamic and functional nonlinearities of blood flow in the cerebral vasculature on cerebral perfusion and autoregulation pressure reserve. Scientific Reports 2023 13:1 2023;13:1-10. https://doi.org/ 10.1038/s41598-023-32643-z.
- [13] Pfaller MR, Pham J, Verma A, Pegolotti L, Wilson NM, Parker DW, et al. Automated generation of 0D and 1D reduced-order models of patient-specific blood flow. Int J Numer Methods Biomed Eng 2022:38. https://doi.org/10.1002/cnm.3639.
- [14] Li Z, Jiang W, Diao J, Chen C, Xu K, Fan H, et al. Segmentary strategy in modeling of cardiovascular system with blood supply to regional skin. Biocybernet Biomed Eng 2021;41:1505-17. https://doi.org/10.1016/j.bbe.2021.08.004.
- [15] Tajeddini F, Firoozabadi B, Pakravan HA, Ahmadi Tafti SH. Patient-specific fluid-structure interaction simulation of the LAD-ITA bypass graft for moderate and severe stenosis: A doubt on the fractional flow reserve-based decision. Biocybernet Biomed Eng 2022;42:143-57. https://doi.org/10.1016/j.bbe.2021.12.003.
- [16] Yuhn C, Oshima M, Chen Y, Hayakawa M, Yamada S. Uncertainty quantification in cerebral circulation simulations focusing on the collateral flow: Surrogate model approach with machine learning. PLoS Comput Biol 2022:18. https://doi. org/10.1371/journal.pcbi.1009996.
- [17] Nash MP, Nielsen PMF, Wittek A, Miller K, Joldes GR. Computational Biomechanics for Medicine: Personalisation, Validation and Therapy. 2019. https://doi.org/10.1007/978-3-030-15923-8.
- [18] Müller LO, Watanabe SM, Toro EF, Feijó RA, Blanco PJ. An anatomically detailed arterial-venous network model. Cerebral and coronary circulation. Front Physiol 2023;14:1-19. https://doi.org/10.3389/fphys.2023.1162391.
- [19] Sharp MK. Pulsatile cerebral paraarterial flow by peristalsis, pressure and directional resistance. Fluids Barriers CNS 2023;20:1-9. https://doi.org/10.1186/s12987-023-00445-0.
- [20] Lewandowska N, Micker M, Ciałkowski M, Warot M, Frąkowiak A, Chęciński P. Numerical study of carotid bifurcation angle effect on blood flow disorders. Lect Notes Comput Vis Biomech 2019;999:23-36. https://doi.org/10.1007/978-3-030-23073-9_2.
- [21] Rundfeldt HC, Lee CM, Lee H, Jung KH, Chang H, Kim HJ. Cerebral perfusion simulation using realistically generated synthetic trees for healthy and stroke patients. Comput Methods Programs Biomed 2024;244:107956. https://doi.org/ 10.1016/j.cmpb.2023.107956.
- [22] Bhardwaj S, Craven BA, Sever JE, Costanzo F, Simon SD, Manning KB. Modeling flow in an in vitro anatomical cerebrovascular model with experimental validation. Front Med Technol 2023;5:1-10. https://doi.org/10.3389/ fmedt.2023.1130201.
- [23] Li Y, Amili O, Moen S, Van de Moortele PF, Grande A, Jagadeesan B, et al. Flow residence time in intracranial aneurysms evaluated by in vitro 4D flow MRI. J Biomech 2022;141:111211. https://doi.org/10.1016/J.JBIOMECH.2022.111211.
- [24] Kim JH, Han H, Moon YJ, Suh S, Kwon TH, Kim JH, et al. Hemodynamic features of microsurgically identified, thin-walled regions of unruptured middle cerebral artery aneurysms characterized using computational fluid dynamics. Neurosurgery 2020;86:851-9. https://doi.org/10.1093/neuros/nyz311.
- [25] Fujimura S, Tanaka K, Takao H, Okudaira T, Koseki H, Hasebe A, et al. Computational fluid dynamic analysis of the initiation of cerebral aneurysms. J Neurosurg 2021;137:335-43. https://doi.org/10.3171/2021.8.JNS211452.
- [26] Zhao Y, Wang H, Chen W, Sun W, Yu X, Sun C, et al. Time-resolved simulation of blood flow through left anterior descending coronary artery: effect of varying extent of stenosis on hemodynamics. BMC Cardiovasc Disord 2023;23:156. https://doi.org/10.1186/S12872-023-03190-2/FIGURES/9.
- [27] Timmins KM, Van der Schaaf IC, Vos IN, Ruigrok YM, Velthuis BK, Kuijf HJ. Geometric deep learning using vascular surface meshes for modality-independent unruptured intracranial aneurysm detection. IEEE Trans Med Imaging 2023:1. https://doi.org/10.1109/TMI.2023.3288746.
- [28] Lang S, Hoelter P, Schmidt MA, Mrochen A, Kuramatsu J, Kaethner C, et al. Accuracy of dose-saving artificial-intelligence-based 3D Angiography (3DA) for grading of intracranial artery stenoses: Preliminary findings. Diagnostics 2023: 13. https://doi.org/10.3390/diagnostics13040712.
- [29] Khan PM, Raj A, Alam MI, Chakraborty S, Roy S. Prediction of vortex structures in pulsatile flow through S-bend arterial geometry with different stenosis levels. Biocybernet Biomed Eng 2023;43:298-312. https://doi.org/10.1016/j.bbe.2023.01.003.
- [30] Bukač M, Čanič S, Tambača J, Wang Y. Fluid-structure interaction between pulsatile blood flow and a curved stented coronary artery on a beating heart: A four stent computational study. Comput Methods Appl Mech Eng 2019;350: 679-700. https://doi.org/10.1016/J.CMA.2019.03.034.
- [31] Athani A, Ghazali NNN, Badruddin IA, Kamangar S, Anqi AE, Algahtani A. Investigation of two-way fluid-structure interaction of blood flow in a patient-specific left coronary artery. Biomed Mater Eng 2022;33:13-30. https://doi.org/10.3233/BME-201171.
- [32] Lopes D, Puga H, Teixeira JC, Teixeira SF. Influence of arterial mechanical properties on carotid blood flow: Comparison of CFD and FSI studies. Int J Mech Sci 2019;160:209-18. https://doi.org/10.1016/J.IJMECSCI.2019.06.029.
- [33] Gharahi H, Zambrano BA, Zhu DC, DeMarco JK, Baek S. Computational fluid dynamic simulation of human carotid artery bifurcation based on anatomy and volumetric blood flow rate measured with magnetic resonance imaging. Int J Adv Eng Sci Appl Math 2016;8:40. https://doi.org/10.1007/S12572-016-0161-6.
- [34] Menon BK, Demchuk AM. Computed tomography angiography in the assessment of patients with stroke/TIA. The Neurohospitalist 2011;1:187. https://doi.org/ 10.1177/1941874411418523.
- [35] Nikolaou K, Alkadhi H, Bamberg F, Leschka S, Wintersperger BJ. MRI and CT in the diagnosis of coronary artery disease: indications and applications. Insights into Imaging 2010 2:1 2010;2:9-24. https://doi.org/10.1007/S13244-010-0049-0.
- [36] Sarabi MS, Ma S, Wang D, Shi Y. Vessel Density Mapping of Brain Small Vessels on 3D High Resolution Black Blood MRI. Joint Annual Meeting ISMRM-ESMRMB ISMRT 31st Annual Meeting 2022;286:120504. https://doi.org/10.58530/2022/4896.
- [37] Hilbert A, Rieger J, Madai VI, Akay EM, Aydin OU, Behland J, et al. Anatomical labeling of intracranial arteries with deep learning in patients with cerebrovascular disease. Frontiers in Neurology 2022;13. https://doi.org/10.3389/fneur.2022.1000914.
- [38] Alnafie MA. Unreported branching pattern of the triplicated anterior cerebral artery associated with multiple bilateral variants of the superior cerebellar artery detected by computed tomography angiography and 3D modeling. Surg Radiol Anat 2023;45:1263-7. https://doi.org/10.1007/s00276-023-03213-9.
- [39] Shen M, Gao P, Chen S, Zhao X, Li R, Du W, et al. Differences in distribution and features of carotid and middle cerebral artery plaque in patients with pial infarction and perforating artery infarction: A 3D vessel wall imaging study. Eur J Radiol 2023;167:111045. https://doi.org/10.1016/j.ejrad.2023.111045.
- [40] Van Den Kerkhof M, Van Der Thiel MM, Postma AA, Van Oostenbrugge RJ, Kroon AA, Jansen JFA, et al. Hypertension correlates with stronger blood flow pulsatility in small perforating cerebral arteries assessed with 7 Tesla magnetic resonance imaging. Hypertension 2023;80:802-10. https://doi.org/10.1161/ HYPERTENSIONAHA.122.19866.
- [41] De Cocker LJ, Lindenholz A, Zwanenburg JJ, van der Kolk AG, Zwartbol M, Luijten PR, et al. Clinical vascular imaging in the brain at 7 T. Neuroimage 2018; 168:452-8. https://doi.org/10.1016/J.NEUROIMAGE.2016.11.044.
- [42] Warnert EAH, Verbree J, Wise RG, Van Osch MJP. Using high-field magnetic resonance imaging to estimate distensibility of the middle cerebral artery. Neurodegener Dis 2016;16:407-10. https://doi.org/10.1159/000446397.
- [43] Woźniak T, Strzelecki M, Majos A, Stefańczyk L. 3D vascular tree segmentation using a multiscale vesselness function and a level set approach. Biocybernet Biomed Eng 2017;37:66-77. https://doi.org/10.1016/j.bbe.2016.11.003.
- [44] Momeni S, Pourghassem H. An automatic aneurysm extraction algorithm in fused brain digital subtraction angiography images. Biocybernet Biomed Eng 2015;35: 264-75. https://doi.org/10.1016/j.bbe.2015.06.003.
- [45] Xu F, Liu D, Zhu D, Hillis AE, Bakker A, Soldan A, et al. Test-retest reliability of 3D velocity-selective arterial spin labeling for detecting normal variations of cerebral blood flow. Neuroimage 2023;271:1-24. https://doi.org/10.1016/j. Neuroimage.2023.120039.
- [46] Igarashi T. A Two-step Surface-based 3D Deep Learning Pipeline for Segmentation of Intracranial Aneurysms. Electrical Engineering and Systems Science, Image and Video Processing 2021;1.
- [47] Patel TR, Patel A, Veeturi SS, Shah M, Waqas M, Monteiro A, et al. Evaluating a 3D deep learning pipeline for cerebral vessel and intracranial aneurysm segmentation from computed tomography angiography-digital subtraction angiography image pairs. Neurosurg Focus 2023;54:1-11. https://doi.org/ 10.3171/2023.3.FOCUS2374.
- [48] Hilbert A, Madai VI, Akay EM, Aydin OU, Behland J, Dusek P, et al. BRAVE-NET : Fully automated arterial brain vessel segmentation in patients with cerebrovascular disease. Front Artif Intell 2020;3:1-14. https://doi.org/10.3389/frai.2020.552258.
- [49] Srinivas S, Masutani E, Norbash A, Hsiao A. Deep learning phase error correction for cerebrovascular 4D flow MRI. Sci Rep 2023;13:1-11. https://doi.org/10.1038/s41598-023-36061-z.
- [50] Vishnevskiy V, Walheim J, Kozerke S. Deep variational network for rapid 4D flow. Nat Mach Intell 2020;2:228-35. https://doi.org/10.1038/s42256-020-0165-6.
- [51] Ghitti B. Numerical methods for computationally efficient and accurate blood flow simulations in complex vascular networks. Universita Di Trento 2023.
- [52] Goni MR, Intan N, Ruhaiyem R, Mustapha M, Achuthan A, Mohd C, et al. Brain vessel segmentation using deep learning - A review. IEEE Access 2022;10: 111322-36. https://doi.org/10.1109/ACCESS.2022.3214987.
- [53] Kim MS, Cha JH, Lee S, Han L, Park W, Ahn JS, et al. Deep-learning-based cerebral artery semantic segmentation in neurosurgical operating microscope vision using indocyanine green fluorescence videoangiography. Front Neurorob 2022;15:1-14. https://doi.org/10.3389/fnbot.2021.735177.
- [54] Rutkowski DR, Roldán-Alzate A, Johnson KM. Enhancement of cerebrovascular 4D flow MRI velocity fields using machine learning and computational fluid dynamics simulation data. Sci Rep 2021;11:1-11. https://doi.org/10.1038/s41598-021-89636-z.
- [55] Hong SW, Song HN, Choi JU, Cho HH, Baek IY, Lee JE, et al. Automated in-depth cerebral arterial labelling using cerebrovascular vasculature reframing and deep neural networks. Sci Rep 2023;13:1-14. https://doi.org/10.1038/s41598-023- 30234-6.
- [56] Ramirez ME, Pena IR, Castillo REB, Sufianov A, Goncharov E, Sanchez JAS, et al. Development of a 3D printed brain model with vasculature for neurosurgical procedure visualisation and training. Biomedicines 2023.
- [57] Sokolowski JD, Soldozy S, Sharifi KA, Norat P, Kearns KN, Williams AM, et al. Preclinical models of middle cerebral artery occlusion : New imaging approaches to a classic technique. Front Neurol 2023:1-11. https://doi.org/10.3389/fneur.2023.1170675.
- [58] Liu J, Fang C, Zhang K, Ma R, Wang T, Xiong L. Transcranial Doppler Ultrasonography detection on cerebrovascular flow for evaluating neonatal hypoxic-ischemic encephalopathy modeling. Front Neurosci 2023:1-10. https:// doi.org/10.3389/fnins.2023.962001.
- [59] Zhang Y, Takao H, Murayama Y, Qian Y. Propose a wall shear stress divergence to estimate the risks of intracranial aneurysm rupture. The Scientific World Journal 2013;2013. https://doi.org/10.1155/2013/508131.
- [60] Csippa B, Závodszky G, Páal G, Szikora I. A new hypothesis on the role of vessel topology in cerebral aneurysm initiation. Comput Biol Med 2018;103:244-51. https://doi.org/10.1016/j.compbiomed.2018.10.018.
- [61] Xiang J, Natarajan SK, Tremmel M, Ma D, Mocco J, Hopkins LN, et al. Hemodynamic-morphologic discriminants for intracranial aneurysm rupture. Stroke 2011;42:144-52. https://doi.org/10.1161/STROKEAHA.110.592923.
- [62] Cho H, Shim VB, Lee TR. Quantifying cerebral blood flow in the whole brain in a diffusion model with multiple sources from cerebrovascular structures. Eng Reports 2022;4:1-14. https://doi.org/10.1002/eng2.12499.
- [63] Kobayashi N, Karino T. Flow patterns and velocity distributions in the human vertebrobasilar arterial system: Laboratory investigation. J Neurosurg 2010;113: 810-9. https://doi.org/10.3171/2010.1.JNS09575.
- [64] Zhu G, Wei Y, Yuan Q, Yang J, Yeo JH. PIV investigation of the flow fields in subject-specific vertebro-basilar (VA-BA) junction. Biomed Eng Online 2019;18: 1-19. https://doi.org/10.1186/s12938-019-0711-9.
- [65] Morbiducci U, Ponzini R, Gallo D, Bignardi C, Rizzo G. Inflow boundary conditions for image-based computational hemodynamics: Impact of idealized versus measured velocity profiles in the human aorta. J Biomech 2013;46:102-9. https://doi.org/10.1016/j.jbiomech.2012.10.012.
- [66] Bozzi S, Morbiducci U, Gallo D, Ponzini R, Rizzo G, Bignardi C, et al. Uncertainty propagation of phase contrast-MRI derived inlet boundary conditions in computational hemodynamics models of thoracic aorta. Comput Methods Biomech Biomed Eng 2017;20:1104-12. https://doi.org/10.1080/ 10255842.2017.1334770.
- [67] Mariotti A, Boccadifuoco A, Celi S, Salvetti MV. Hemodynamics and stresses in numerical simulations of the thoracic aorta: Stochastic sensitivity analysis to inlet flow-rate waveform. Comput Fluids 2021;230:105123. https://doi.org/10.1016/j.compfluid.2021.105123.
- [68] Gallo D, De Santis G, Negri F, Tresoldi D, Ponzini R, Massai D, et al. On the use of in vivo measured flow rates as boundary conditions for image-based hemodynamic models of the human aorta: Implications for indicators of abnormal flow. Ann Biomed Eng 2012;40:729-41. https://doi.org/10.1007/s10439-011- 0431-1.
- [69] Bandoła D. Identification and modeling the pulsatile blood flow in the cardiovascular system using a zero-dimensional model in an electrical analogy. Archiwum Instytutu Techniki Cieplnej 2016;1:5-28.
- [70] Ujiie H, Iwata Y. Solitonic Windkessel model for intracranial aneurysm. Brain Sci 2022;12:1-12. https://doi.org/10.3390/brainsci12081016.
- [71] Kokalari I, Karaja T, Guerrisi M. Review on lumped parameter method for modeling the blood flow in systemic arteries. J Biomed Sci Eng 2013;2013:92-9. https://doi.org/10.4236/JBISE.2013.61012.
- [72] Aboelkassem Y, Virag Z. A hybrid Windkessel-Womersley model for blood flow in arteries. J Theor Biol 2019;462:499-513. https://doi.org/10.1016/J.JTBI.2018.12.005.
- [73] Sarabian M, Babaee H, Laksari K. Physics-informed neural networks for brain hemodynamic predictions using medical imaging. IEEE Trans Med Imaging 2022; 41:2285-303. https://doi.org/10.1109/TMI.2022.3161653.
- [74] Dumais F, Caceres MP, Janelle F, Seifeldine K, Arès-Bruneau N, Gutierrez J, et al. eICAB: A novel deep learning pipeline for Circle of Willis multiclass segmentation and analysis. Neuroimage 2022;260. https://doi.org/10.1016/j.neuroimage.2022.119425.
- [75] Daher A, Payne S. A network-based model of dynamic cerebral autoregulation. Microvasc Res 2023;147:104503. https://doi.org/10.1016/j.mvr.2023.104503.
- [76] You T-Y, Dong Q, Cui M. Emerging links between cerebral blood flow regulation and cognitive decline: A role for brain microvascular pericytes. Aging Dis 2022; 14. https://doi.org/10.14336/ad.2022.1204.
- [77] Rzepliński R, Tomaszewski M, Sługocki M, Karczewski K, Krajewski P, Skadorwa T, et al. Method of creating 3D models of small caliber cerebral arteries basing on anatomical specimens. J Biomech 2021;125:110590. https://doi.org/ 10.1016/J.JBIOMECH.2021.110590.
- [78] Rzepliński R, Sługocki M, Kwiatkowska M, Tarka S, Tomaszewski M, Kucewicz M, et al. Standard clinical computed tomography fails to precisely visualise presence, course and branching points of deep cerebral perforators. Folia Morphol 2023;82: 37-41. https://doi.org/10.5603/FM.A2021.0133.
- [79] Sosnowski M, Krzywanski J, Grabowska K, Gnatowska R. Polyhedral meshing in numerical analysis of conjugate heat transfer. EPJ Web Conf 2018;180:02096.
- [80] Tyfa Z, Obidowski D, Reorowicz P, Stefańczyk L, Fortuniak J, Jóźwik K. Numerical simulations of the pulsatile blood flow in the different types of arterial fenestrations: Comparable analysis of multiple vascular geometries. Biocybernet Biomed Eng 2018;38:228-42. https://doi.org/10.1016/J.BBE.2018.01.004.
- [81] Li G, Wang H, Zhang M, Tupin S, Qiao A, Liu Y, et al. Prediction of 3D Cardiovascular hemodynamics before and after coronary artery bypass surgery via deep learning. Communications Biology 2021 4:1 2021;4:1-12. https://doi. org/10.1038/s42003-020-01638-1.
- [82] Wang W, Cao Y, Okaze T. Comparison of hexahedral, tetrahedral and polyhedral cells for reproducing the wind field around an isolated building by LES. Build Environ 2021;195:107717. https://doi.org/10.1016/J.BUILDENV.2021.107717.
- [83] Deeg KH, Reisig A. Doppler sonographic screening of the flow in the basilar artery during head rotation reduces the risk for sudden infant death. Ultraschall Med 2010;31:506-14. https://doi.org/10.1055/s-0029-1245144.
- [84] Blanco PJ, Müller LO, Spence JD. Blood pressure gradients in cerebral arteries: A clue to pathogenesis of cerebral small vessel disease. Stroke Vasc Neurol 2017;2: 108. https://doi.org/10.1136/SVN-2017-000087.
- [85] Kim MO, Li Y, Wei F, Wang J, O’Rourke MF, Adji A, et al. Normal cerebral vascular pulsations in humans: Changes with age and implications for microvascular disease. J Hypertens 2017;35:2245-56. https://doi.org/10.1097/ HJH.0000000000001459.
- [86] Harper C, Cardullo PA, Weyman AK, Patterson RB. Transcranial Doppler ultrasonography of the basilar artery in patients with retrograde vertebral artery flow. J Vasc Surg 2008;48:859-64. https://doi.org/10.1016/J.JVS.2008.05.057.
- [87] Saito I, Segawa H, Shiokawa Y, Taniguchi M, Tsutsumi K. Middle cerebral artery occlusion: correlation of computed tomography and angiography with clinical outcome. Stroke 1987;18:863-8. https://doi.org/10.1161/01.STR.18.5.863.
- [88] Wajihah SA, Sankar DS. A review on non-Newtonian fluid models for multi-layered blood rheology in constricted arteries. Archive of Applied Mechanics 2023 93:5 2023;93:1771-96. https://doi.org/10.1007/S00419-023-02368-6.
- [89] Chen A, Basri AA, Ismail N Bin, Ahmad KA. The Numerical Analysis of NonNewtonian Blood Flow in a Mechanical Heart Valve. Processes 2023, Vol 11, Page 37 2022;11:37. https://doi.org/10.3390/PR11010037.
- [90] Woo HG, Kim HG, Lee KM, Ha SH, Jo H, Heo SH, et al. Blood viscosity associated with stroke mechanism and early neurological deterioration in middle cerebral artery atherosclerosis. Sci Rep 2023:1-8. https://doi.org/10.1038/s41598-023- 36633-z.
- [91] Tomaszewski M, Sybilski K, Baranowski P, Małachowski J. Experimental and numerical flow analysis through arteries with stent using particle image velocimetry and computational fluid dynamics method. Biocybernet Biomed Eng 2020;40:740-51. https://doi.org/10.1016/j.bbe.2020.02.010.
- [92] Kolditz O. Finite Volume Method. Computational Methods in Environmental Fluid Mechanics 2002:173-90. https://doi.org/10.1007/978-3-662-04761-3_8.
- [93] Feldmeier A. Theoretical Fluid Dynamics 2019. https://doi.org/10.1007/978-3-030-31022-6.
- [94] Holland EC, Watton PN, Ventikos Y. Biological Fluid Mechanics: Integrative and Multiscale Computational Modeling. Comprehensive Biotechnology, Second Edition 2011;5:203-16. https://doi.org/10.1016/B978-0-08-088504-9.00529-8.
- [95] Chiu JJ, Chien S. Effects of disturbed flow on vascular endothelium: Pathophysiological basis and clinical perspectives. Physiol Rev 2011;91:327-87. https://doi.org/10.1152/physrev.00047.2009.
- [96] Ene-Iordache B, Mosconi L, Antiga L, Bruno S, Anghileri A, Remuzzi G, et al. Radial artery remodeling in response to shear stress increase within arteriovenous fistula for hemodialysis access. Endothelium: J Endothelial Cell Res 2003;10: 95-102. https://doi.org/10.1080/10623320303365.
- [97] Brisman JL, Song JK, Newell DW. Cerebral aneurysms. N Engl J Med 2006;355: 928-39. https://doi.org/10.1056/NEJMRA052760.
- [98] Rahma AG, Yousef K, Abdelhamid T. Blood flow CFD simulation on a cerebral artery of a stroke patient. SN Appl Sci 2022;4:1-12. https://doi.org/10.1007/s42452-022-05149-y.
- [99] Tzirakis K, Kamarianakis Y, Kontopodis N, Ioannou CV. Classification of blood rheological models through an idealized symmetrical bifurcation. Symmetry 2023;15:630. https://doi.org/10.3390/sym15030630.
- [100] Zarrinkoob L, Ambarki K, Wåhlin A, Birgander R, Eklund A, Malm J. Blood flow distribution in cerebral arteries. J Cereb Blood Flow Metab 2015;35:648. https:// doi.org/10.1038/JCBFM.2014.241.
- [101] Bozkurt S, Bozkurt S. Computational modelling of cerebral blood flow rate at different stages of moyamoya disease in adults and children. Bioengineering 2023:10. https://doi.org/10.3390/bioengineering10010077.
- [102] Lee NJ, Park IS, Koh IS, Jung TW, Rhyu IJ. No volume difference of medulla oblongata between young and old Korean people. Brain Res 2009;1276:77-82. https://doi.org/10.1016/J.BRAINRES.2009.04.027.
- [103] Arts T, Meijs TA, Grotenhuis H, Voskuil M, Siero J, Biessels GJ, et al. Velocity and pulsatility measures in the perforating arteries of the basal Ganglia at 3T MRI in reference to 7T MRI. Front Neurosci 2021;15:1-10. https://doi.org/10.3389/ fnins.2021.665480.
- [104] Geurts LJ, Zwanenburg JJM, Klijn CJM, Luijten PR, Biessels GJ. Higher Pulsatility in Cerebral Perforating Arteries in Patients With Small Vessel Disease Related Stroke, a 7T MRI Study. Stroke 2018;50:STROKEAHA118022516. https://doi. org/10.1161/STROKEAHA.118.022516.
- [105] Singh A, Bonnell G, De Prey J, Buchwald N, Eskander K, Kincaid KJ, et al. Small-vessel disease in the brain. Am Heart J Plus: Cardiol Res Pract 2023;27:100277. https://doi.org/10.1016/j.ahjo.2023.100277.
- [106] Ghaffari M, Tangen K, Alaraj A, Du X, Charbel FT, Linninger AA. Large-scale subject-specific cerebral arterial tree modeling using automated parametric mesh generation for blood flow simulation. Comput Biol Med 2017;91:353-65. https:// doi.org/10.1016/j.compbiomed.2017.10.028.
- [107] Spiegel M, Redel T, Zhang JJ, Struffert T, Hornegger J, Grossman RG, et al. Tetrahedral vs. polyhedral mesh size evaluation on flow velocity and wall shear stress for cerebral hemodynamic simulation. Comput Methods Biomech Biomed Eng 2011;14:9-22. https://doi.org/10.1080/10255842.2010.518565.
- [108] Vignali E, Gasparotti E, Mariotti A, Haxhiademi D, Ait-Ali L, Celi S. High-versatility left ventricle pump and aortic mock circulatory loop development for patient-specific hemodynamic in vitro analysis. ASAIO J 2022;68:1272-81. https://doi.org/10.1097/MAT.0000000000001651.
- [109] Kang T, Mukherjee D, Ryu J. Numerical investigation of carotid stenosis in three-dimensional aortic-cerebral vasculature: Pulsatility index, resistive index, time to peak velocity, and flow characteristics. Eng Appl Comput Fluid Mech 2021;15: 1645-65. https://doi.org/10.1080/19942060.2021.1984993.
- [110] Lampropoulos DS, Bourantas GC, Zwick BF, Kagadis GC, Wittek A, Miller K, et al. Simulation of intracranial hemodynamics by an efficient and accurate immersed boundary scheme. Int J Numer Methods Biomed Eng 2021;37:1-25. https://doi. org/10.1002/cnm.3524.
- [111] Schönfeld MH, Forkert ND, Fiehler J, Cho YD, Han MH, Kang HS, et al. Hemodynamic differences between recurrent and nonrecurrent intracranial aneurysms: Fluid dynamics simulations based on MR angiography. J Neuroimaging 2019;29:447-53. https://doi.org/10.1111/jon.12612.
- [112] Dong J, Mei Y, Bai X, Tong X, Dmytriw AA, Yang B, et al. Hemodynamic differences between basilar artery fenestration and normal vertebrobasilar artery: A pilot study. Front Neurol 2022;12:1-7. https://doi.org/10.3389/fneur.2021.766174.
- [113] Park CS, Hartung G, Alaraj A, Du X, Charbel FT, Linninger AA. Quantification of blood flow patterns in the cerebral arterial circulation of individual (human) subjects. Int J Numer Methods Biomed Eng 2020:36. https://doi.org/10.1002/cnm.3288.
- [114] Kazibutowska Z, Gołba A, Bal A, Motta E, Debski M. Dynamics of blood flow velocity changes evaluated with Doppler method in cerebral arteries in acute phase of stroke. Udar Mozgu - Problemy Interdyscyplinarne 2005;7:10-7.
- [115] Sun H, Li B, Zhang L, Zhang Y, Liu J, Huang S, et al. Numerical study of hemodynamic changes in the Circle of Willis after stenosis of the internal carotid artery. Comput Methods Programs Biomed 2024;243:107881. https://doi.org/ 10.1016/j.cmpb.2023.107881.
- [116] Davidson H, Scardino B, Thibbotuwawa P, Taebi A. Variations of middle cerebral artery hemodynamics due to aneurysm clipping surgery. ASME J Med Diagnostics 2024:1.
- [117] Ha SH, Ryu JC, Bae JH, Koo S, Chang JY, Kang DW, et al. Factors associated with two different stroke mechanisms in perforator infarctions regarding the shape of arteries. Sci Rep 2022;12:1-8. https://doi.org/10.1038/s41598-022-21329-7.
- [118] Bhogal P, Almatter M, Hellstern V, Pérez MA, Lehmberg J, Ganslandt O, et al. Basilar artery perforator aneurysms : Report of 9 cases and review of the literature. J Clin Neurosci 2019;63:122-9. https://doi.org/10.1016/j.jocn.2019.01.026.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-98142472-1efa-43ef-b7e8-8b5eab9eda41