Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A problem of reflection at a free surface of micropolar orthotropic piezothermoelastic medium is discussed in the present paper. It is found that there exist five type plane waves in micropolar orthotropic piezothermoelastic medium, namely quasi longitudinal displacement wave (quasi LD wave), quasi thermal wave (quasi T wave), quasi CD-I, quasi CD-II wave and electric potential wave (PE wave). The amplitude ratios corresponding to reflected waves are obtained numerically. The effect of angle of incidence and thermopiezoelectric interactions on the reflected waves are studied for a specific model. Some particular cases of interest are also discussed.
Rocznik
Tom
Strony
113--124
Opis fizyczny
Bibliogr. 39 poz., rys.
Twórcy
autor
- Department of Mathematics, Kurukshetra University, Kurukshetra 136119, India
autor
- Department of Mathematics, MM University, Mullana, Ambala, Haryana, India
autor
- Department of Basic and Applied Sciences, Punjabi University, Patiala, Punjab, India
autor
- 4Department of Mathematics, University of Brasov, Romania
Bibliografia
- [1] A.C. Eringen, E.S. Suhubi, Non-linear theory of micro-elastic solids, International Journal of Engineering Science 2, 189–203 (1964).
- [2] A.C. Eringen, Linear theory of micropolar elasticity, Journal of Math and Mechanics 15, 909–923 (1996).
- [3] W. Nowacki, Couple Stress in the Theory of Thermoelasticity, Proc. ITUAM Symposia,Vienna, Editors H. Parkus and L. I. Sedov, Springer-Verlag, 259–278 (1966).
- [4] A.C. Eringen, Foundations of micropolar thermoelasticity, Course of lectures No. 23, CSI H. Udline Springer, 1970.
- [5] A.C. Eringen, Microcontinuum field theory I, Foundations and Solids (Springer, New York), 1992.
- [6] D. Iesan, The plane micropolar strain of orthotropic elastic solids, Archiwum Mechaniki Stosowanej 25, 547–561 (1973).
- [7] D. Iesan, Torsion of anisotropic micropolar elastic cylinders, Zeitschrift für Angewandte Mathematik und Mechanik 54, 773–779 (1974).
- [8] D. Iesan, Bending of orthotropic micropolar elastic beams by terminal couples, Analele Stiintifice Ale Uni. IASI 20, 411–418 (1974).
- [9] S. Nakamura, R. Benedict, R. Lakes, Finite element method for orthotropic micropolar elasticity, International, Journal of Engineering Science 22, 319–330 (1984).
- [10] R.Kumar, S. Choudhary,Mechanical sources in orthotropic micropolar continua, Proceedings of the Indian Academy of Sciences (EarthandPlanetary Sciences) 111, 133–141 (2002).
- [11] R. Kumar, S. Choudhary, Influence of Green’s function for orthotropic micropolar continua, Archive of Mechanics 54, 185–198 (2002).
- [12] R.Kumar, S. Choudhary, Dynamical behavior of orthotropic micropolar elastic medium, Journal of Vibration and Control 8, 1053–1069 (2002).
- [13] R. Kumar, S. Choudhary, Response of orthotropic microploar elastic medium due to various Sources, Meccanica 38, 349–368 (2003).
- [14] R.Kumar, S. Choudhary, Response of orthotropic micropolar elastic medium due to time harmonic sources, Sadhana 29, 83–92 (2004).
- [15] R.D. Mindlin, On the equations of motion of piezoelectric crystals, in: N.I. Muskilishivili, Problems of continuum Mechanics, 70th Birthday Volume, SIAM, Philadelphia, 282–290 (1961).
- [16] W. Nowacki, Some general theorems of thermopiezoelectricity, Journal of Thermal Stresses 1, 171–182 (1978).
- [17] W. Nowacki, Foundations of linear piezoelectricity, in: H. Parkus (Ed.), Electromagnetic Interactions in Elastic Solids, Springer, Wein, Chapter 1(1979).
- [18] W. Nowacki, Mathematical models of phenomenological piezo-electricity, New Problems in Mechanics of Continua, University of Waterloo Press, Waterloo, Ontario, 1983.
- [19] D.S. Chandrasekharaiah, A temperature-rate-dependent theory of thermopiezoelectricity, Journal of Thermal Stresses 7, 293–306 (1984).
- [20] D.S. Chandrasekharaiah, A generalized linear thermoelasticity theory for piezoelectric media, Acta Mechanica 71, 39–49 (1988).
- [21] W.Q. Chen, On the general solution for piezothermoelastic for transverse isotropy with application, ASME, Journal of Applied Mechanics 67, 705–711 (2000).
- [22] P.F. Hou, W. Luo, Y.T. Leung, A point heat source on the surface of a semi-infinite transverse isotropic piezothermoelastic material, SME Journal of Applied Mechanics 75, 1–8 (2008).
- [23] A.N. Abd-Alla, F.A. Alshaikh, Reflection and refraction of plane quasi-longitudinal waves at an interface of two piezoelectric media under initial stresses, Archive of Applied Mechanics 79(9), 843–857 (2009).
- [24] A.N. Abd-Alla, F.A. Alshaikh, The effect of the initial stresses on the reflection and transmission of plane quasi-vertical transverse waves in piezoelectric materials, Proceedings of World Academy of Science, Engineering and Technology 38, 660–668 (2009).
- [25] Y. Pang, Y.S.Wang, J.X. Liu, D.N.Fang, Reflection and refraction of plane waves at the interface between piezoelectricand piezomagnetic media, International Journal of Engineering Science 46, 1098–1110 (2008).
- [26] J.N. Sharma, V. Walia, S.K. Gupta, Reflection of piezothermoelastic waves from the charge and stress free boundary of a transversely isotropic half space, International Journal of Engineering Science, 46(2), 131–146 (2008).
- [27] Z.B. Kuang , X.G. Yuan, Reflection and transmission of waves in pyroelectric and piezoelectric materials, Journal of Sound and Vibration 330 (6), 1111–1120 (2011).
- [28] A.N. Abd-Alla, F.A. Alshaikh, A.Y. Al-Hossain, The reflection phenomena of quasi-vertical transverse waves in piezoelectric medium under initial stresses, Meccanica 47(3), 731–744 (2012).
- [29] F.A. Alshaikh, The mathematical modelling for studying the influence of the initial stresses and relaxation times on reflection and refraction waves in piezothermoelastic half-space, Applied Mathematics 3(8), 819–832 (2012).
- [30] F.A. Alshaikh, Reflection of Quasi Vertical Transverse Waves in the Thermo-Piezoelectric Material under Initial Stress (Green- Lindsay Model), International Journal of Pure and Applied Sciences and Technology 13, 27–39 (2012).
- [31] M.M. Meerschaert, R.J. Mc Gough, Attenuated Fractional Wave Equations With Anisotropy, Journal of Vibration and Acoustics 136,051004–1 to 051004–5 (2014).
- [32] A. Sur, M. Kanoria, Fractional heat conduction with finite wave speed in a thermo-visco-elastic spherical shell, Lat. Am. J. Solids Struct. 11(7), 1132–1162 (2014).
- [33] S.M. Abo-Dahab, Magnetic field effect on three plane waves propagation at interface between solid-liquid media placed under initial stress in the context of GL model, Applied Mathematics and Information Sciences 9(6), 3119–3131 (2015).
- [34] A.M. Abd-Alla, S.M. Abo-Dahab, Effect of initial stress, rotation and gravity on propagation of the surface waves in fibre-reinforced anisotropic solid elastic media, Journal of Computational and Theoretical Nanoscience 12(2), 305–315 (2015).
- [35] A.K. Vashishth, H. Sukhija, Reflection and transmission of plane waves from fluid-piezothermoelastic solid interface, Applied Mathematics and Mechanics 36(1), 11–36 (2015).
- [36] R. Kumar, A. Kumar, Elastodynamic response of thermal laser pulse in micropolar thermoelastic diffusion medium, Journal of Thermodynamics 2016, (2016).
- [37] S.R. Mahmoud, An analytical solution for the effect of initial stress, rotation, magnetic field and a periodic loading in a thermoviscoelastic medium with a spherical cavity, Mechanics of Advanced Materials and Structures 23(1), 1–7 (2016).
- [38] M.A. Ezzat, A.S. EI-Karamany, A.A. EI-Bary, Generalized thermoelasticity with memory dependent derivatives involving two temperatures, Mechanics of Advanced materials and Structures 23(5), 545–553 (2016).
- [39] W.S. Slaughter, The Linearized Theory of Elasticity, Birkhauser, Basel (2002).
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9808ca1a-25f3-4eb2-9bc3-d9ff655d479c