PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Physicochemical and Mechanical Properties of Different Morphological Parts of the Tea Tree (Melaleuca alternifolia) Fibres

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Fizykochemiczne i mechaniczne właściwości różnych morfologicznie części drzewa herbacianego (Melaleuca alternifolia)
Języki publikacji
EN
Abstrakty
EN
Tea tree fibres as underutilised fibres were investigated physically, chemically and mechanically. From this study, it was found that the tea tree leaf (TTL) had the highest density - 0.42 g/cm3, and the highest percentage of water absorption - 69.9%. From the tensile strength, the tea tree trunk (TTT) gave the highest value - 65.44 MPa, followed by the tea tree branch (TTB) - 48.43 MPa and tea tree leaf (TTL) - 47.47 MPa. The chemical composition of fibres showed TTT had the highest cellulose content, which is 33.9%, followed by TTB -27.2%, and TTL - 13.5%. Meanwhile TTL had the highest extractive value - 16.4%, almost 3 times higher than TTB and TTT due to the existence of tea tree oil in TTL. From the FTIR result, TTL, TTB and TTT had similar spectra and no major differences. This paper aims to rationalise the potential of underutilised tea tree (Melaleuca alternifolia) waste as a novel source of natural fibre, to become a potential reinforcement or filler in the development of a new biocomposite.
PL
Na podstawie badań stwierdzono, że liście drzewa herbacianego mają najwyższą gęstość 0.42 g/cm3 i najwyższą zawartość procentową absorpcji wody 69.9%. Badając wytrzymałość stwierdzono, że włókna z pnia drzewa herbacianego charakteryzują się najwyższą wytrzymałością 65.44 MPa, podczas gdy włókna z gałęzi mają wytrzymałość 48.43 MPa, a z liści 47.47 MPa. Badanie składu chemicznego wykazało, że włókna z pnia mają najwyższą zawartość celulozy 33.9%, podczas gdy z gałęzi 27.2% i liści 13.5%. Możliwość ekstrakcji jest największa dla liści 16.4%, prawie trzykrotnie wyższa niż dla gałęzi i pnia w wyniku zawartości w liściach olejku z drzewa herbacianego. Na podstawie badań FTIR stwierdzono, że poszczególne rodzaje morfologiczne włókien mają zbliżone rozkłady spektralne bez zasadniczych różnic. Głównym celem artykułu jest udowodnienie możliwości wykorzystania odpadów z drzewa herbacianego jako nowego źródła włókien naturalnych mogącego służyć jako potencjalne wzmocnienie lub wypełnienie przy opracowaniu nowych biokompozytów.
Rocznik
Strony
31--36
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
autor
  • Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
  • Knowledge and Technology Management Division, Sabah Economic Development & Investment Authority (SEDIA), Kota Kinabalu, Malaysia
autor
  • Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia Mohd Shah Mohd Kama Faculty of Engineering, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
Bibliografia
  • 1. Rodney J, Sahari J, Mohd Kamal Mohd Shah. Review: Tea Tree (Melaleuca Alternifolia) As A New Material For Biocomposites. Journal of Applied Science and Agriculture 2015, 10(3): 21-39.
  • 2. SEDIA. Production protocols to commercialize the production of tea tree oil (Melaleucaalternifolia) in Sabah, Malaysia. Sabah Economic Development and Investment Authority (SEDIA), Sabah. 2007. Unpublished result.
  • 3. Carson CF, Hammer KA, Riley TV. Compilation and Review of Published and Unpublished Tea Tree Oil Literature. Rural Industries Research and Development Corporation 2005; 05, 151; https://rirdc.infoservices.com.au/items/05-151.
  • 4. Richard LD. The Australian tea tree oil industry. In: IFEAT International Conference ‘Australia and New Zealand: Essential Oils and Aroma Chemicals - Production and Markets’. Sydney, Australia, 2-6 November, 2003.
  • 5. Zhang L, Sun X, Tian Y, Gong X. Effects of brown sugar and calcium superphosphate on the secondary fermentation of green waste. Bioresource Technology 2013; 131: 68–75.
  • 6. Abu Bakar A, Hassan A. Oil Palm Empty Fruit Bunch Fibre-Filled Poly (Vinyl Chloride) Composites. In: Sapuan SM. (Eds.) Research on Natural Fibre Reinforced Polymer Composites. 2009. pp.13-35. Serdang: Universiti Putra Malaysia Press.
  • 7. Khalina A, Jalaluddin H, Martin PA, Khairul ZMD, Rimfiel J, Nor Azowa I. Mechanical and rheological properties of injection moulded short oil palm fibre reinforced polymer composites. In: Sapuan SM. (Eds.) Research on Natural Fibre Reinforced Polymer Composites. 2009. pp. 109-125. Serdang: Universiti Putra Malaysia Press.
  • 8. Paridah MT, Loh YF. Enhancing the performance of oil palm stem plywood via treatment with low molecular weight phenol formaldehyde. In: Sapuan SM. (Eds.) Research on Natural Fibre Reinforced Polymer Composites. 2009. pp.281-299. Serdang: Universiti Putra Malaysia Press.
  • 9. Nur Yuziah MY. Effect of fibre loading and additives on the properties of rubberwoodpolypropylene composites. In: S.M. Sapuan, (eds.) Research on Natural Fibre Reinforced Polymer Composites. 2009. pp. 281-299. Serdang: Universiti Putra Malaysia Press.
  • 10. Sahrim HA, Hazleen A. A study of natural fibre reinforced thermoplastic natural rubber composites. In: S.M. Sapuan, (eds.) Research on Natural Fibre Reinforced Polymer Composites. 2009. pp. 301-342. Serdang: Universiti Putra Malaysia Press.
  • 11. Anuar UMK, Hamdan H, Paridah MT, Edi SB, Sapuan SM. Modification of plabamboo through resin impregnation. In: S.M. Sapuan, (eds.) Research on Natural Fibre Reinforced Polymer Composites. 2009. pp. 143-156. Serdang: Universiti Putra Malaysia Press.
  • 12. Sahari J, Sapuan SM. Natural fibre reinforced biodegradable polymer composites. Rev. Adv. Mater. Sci. 2011; 30: 166-174.
  • 13. Sahari J, Sapuan SM, Ismarrubie ZN, Rahman MZA. Comparative study on physical properties of different part of sugar palm fibre reinforced unsaturated polyester composites. Key Engineering Material. 2011a; 471-472: 455-460.
  • 14. Sahari J, Sapuan SM, Ismarrubie ZN, Rahman MZA. Investigation on Bending Strength and Stiffness of Sugar Palm Fibre from Different Parts Reinforced Unsaturated Polyester Composites. Key Engineering Material. 2011b; 471-472: 502-506.
  • 15. Sahari J, Sapuan SM, Ismarrubie ZN, Rahman MZA. Physical and Chemical Properties of Different Morphological Parts of Sugar Palm. Fibres & Fibres & Textiles in Eastern Europe 2012; 20, 2(91) 23-26.
  • 16. Sahari J, Sapuan SM, Zainudin ES, Maleque MA. Mechanical and thermal properties of environmentally friendly composites derived from sugar palm tree. Materials and Design 2013a; 49: 285–289.
  • 17. Sahari J, Sapuan SM, Zainudin ES, Maleque MA. Thermo-mechanical behaviors of thermoplastic starch derived from sugar palm tree Arenga pinnata. Carbohydrate polymers 2013b; 92(2): 1711-1716.
  • 18. Awang M, Sapuan SM, Wirawan R, Hamdan HI. A review of the natural fibre reinforced polymer composite research. In: Sapuan SM. (Eds.) Research on Natural Fibre Reinforced Polymer Composites. 2009. pp. 1-12. Serdang: Universiti Putra Malaysia Press.
  • 19. Wise LE, Murphy M, D’ Addie AA. Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on hemicelluloses. Paper Trade Journal 1946; 122: 35.
  • 20. Zahner R, Whitmore FW. Early growth of radically thinned loblolly pine. Journal of Forest 1960; 58: 628-634.
  • 21. Cao Y, Shibata S, Fukumoto I. Press forming of short natural fibre-reinforced biodegradable resin: effect of fibre volume and length on flexural properties. Polymer Testing 2005; 24: 1005-1011.
  • 22. Cao Y, Shibata S, Fukumoto I. Mechanical properties of biodegradable composites reinforce with bagasse fibre before and after alkali treatments. Composite Part A: Applied Science and Manufacturing 2006; 37: 423-429.
  • 23. Bismarck A, Mishra S, Lampke T. Plant fibres as reinforcement for green composites. In: Mohanty AK, Misra M, Drzal LT. (Eds) Natural Fibres, Biopolymers and Biocomposites, 2005. pp. 37-108.Boca Raton: CRC Press.
  • 24. Shash V. Handbook of Polymer Testing. Ed. A Wiley Interscience Publication, New York, 1983.
  • 25. Reddy N, Yang, Y. Biofibers from agricultural byproducts for industrial applications. Trends in Biotechnology 2005; 23(11): 22-27.
  • 26. Rowell RM. Property enhanced natural fibre composite material based on chemical modification. In: Prasad et al. (eds) Science and technology of polymer and advanced materials. Ed. Plenum Press, New York, 1998, pp. 717-732.
  • 27. Ray D, Rout J. Thermoset biocomposites. In: Mohanty et al. (Eds) Natural fibers,biopolymers, and biocomposites. Ed. CRC Press, Boca Raton, 2005, pp. 291- 345.
  • 28. Mohanty AK, Misra M, Drzal LT, Selke SE, Harte BR, Hinrichsen G. Natural fibres, biopolymers, and biocomposites: an introduction. In: Mohanty et al. (eds) Natural fibres, biopolymers, and biocomposites. Ed. CRC Press, Boca Raton, 2005, pp. 1-36.
  • 29. Benelli G, Flamini G, Canale A, Cioni PL, Conti B. Toxicity evaluation ofdifferent essential oil formulations against the Mediterranean Fruit fly Ceratitiscapitata (Wiedemann) (DipteraTephritidae). Crop Protect 2012; 42: 223–229.
  • 30. Williamson EM, Priestley CM, Burgess IF. An investigation andcomparison of the bioactivity of selected essential oils on human liceand house dust mites. Fitoterapia 2007; 78: 521–525.
  • 31. Callander JT, James PJ. Insecticidal and repellent effects of tea tree Melaleuca alternifolia) oil against Lucilia cuprina. Veterinary Parasitology 2012; 184: 271– 278.
  • 32. Southwell I, Lowe R. Tea Tree The Genus Melaleuca. Ed. Netherland, Harwood Academic Publishers, 1999, pp. 63-76, 81-89.
  • 33. International Standards Organisation. 1996. Oil of Melaleuca, terpinen-4-ol type (tea tree oil).International Standard ISO 4730:1996(E), International Standards Organisation, Geneva (Standard).
  • 34. Kazayawoko M, Balatinecz JJ, Woodhans RT. Diffuse reflectance Fourier transform infrared spectra of wood fibres treated with maleated PP. J. App. Pol. Scien. 1997; 66: 1163-1173.
  • 35. Glasser WG, Kelley SS. Lignin. In: Mark HF, Kroschwits JI. (eds) Encyclopedia of Polymer Science and Engineering. 2nd Edition, John Wiley & Sons, Inc. New York, 1987, pp. 795-852.
  • 36. Himmelsbach DS, Khalili S, Akin DE. The use of FT-IR micro-spectroscopic mapping to study the effects of enzymatic retting of flax (Linum usitatissium L.) stem, Journal of Science and Food Agriculture 2002; 82: 685-696.
  • 37. Abidi N, Cabralesa L, Haigler CH. Changes in the cell wall and cellulose content of developing cotton fibers investigated by FTIR spectroscopy. Carbohydrate Polymers 2014; 100: 9-16.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-97f93c4f-d29c-46a1-af79-e6918ab37b46
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.