PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An influence of factors of flow condition, particle and material properties on slurry erosion resistance

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The degradation of materials due to slurry erosion is the serious problem which occurs in the power industries. The paper presents actual knowledge about an influence of individual factors connected with flow conditions, particles and material properties on the slurry erosion resistance. Among the factors connected with operating conditions, an influence of impact angle, and velocity of impact, particle concertation and liquid temperature have been described. In case of the factors connected with solid particle properties, an influence of the size, shape and hardness have been discussed. In the part devoted to the impact of material properties, due to different types of materials, the issues of resistance to erosion of slurries related to the properties of steel, ceramics and polymers are discussed separately. In the paper has been shown that a change of any of mentioned factors causes a change in the erosion rate due to the synergistic effects that accompany to slurry degradation.
Rocznik
Strony
28--53
Opis fizyczny
Bibliogr. 104 poz., rys.
Twórcy
autor
  • Institute of Fluid Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdansk, Poland
  • Gdansk University of Technology, Interdisciplinary Doctoral Studies, 11/12 Narutowicza, 80-233 Gdansk, Poland
autor
  • Institute of Fluid Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdansk, Poland
Bibliografia
  • 1. Al-Bukhaiti M. A., Ahmed S. M., Badran F. M. F., Emara K. M., Effect of impingement angle on slurry erosion behaviour and mechanisms of 1017 steel and high-chromium white cast iron. Wear, 262 (2007) 1187–1198.
  • 2. Oka Y. I., Okamura K., Yoshida T., Practical estimation of erosion damage caused by solid particle impact: Part 1: Effects of impact parameters on a predictive equation. Wear, 259 (2005) 95–101.
  • 3. Arora H. S., Grewal H. S., Singh H., Mukherjee S., Zirconium based bulk metallic glass-Better resistance to slurry erosion compared to hydroturbine steel. Wear, 307 (2013) 28–34.
  • 4. Finnie I., Erosion of surfaces by solid particles. Wear 3 (1960) 87–103.
  • 5. Bitter J.G.A., A study of erosion phenomena, part I. Wear 6 (1963) 5-21.
  • 6. Zbrowski A., Mizak W., Analiza systemów wykorzystywanych w badaniach uderzeniowego zużycia erozyjnego. Problemy eksploatacji, 3 (2011) 235–250, (in Polish)
  • 7. Sinha S.L., Dewangan S.K., Sharma A., A review on particulate slurry erosive wear of industrial materials: In context with pipeline transportation of mineral−slurry. Particulate Science and Technology, 35 (2017) 103-118.
  • 8. Grewal H. S., Agrawal A., Singh H., Design and development of high-velocity slurry erosion test rig using CFD. Journal of Materials Engineering and Performance, 22 (2013) 152–161.
  • 9. Finnie I., Some reflections on the past and future of erosion. Wear 186-187 (1995) 1-10.
  • 10. Buszko M.H., Krella A.K., Slurry erosion – design of test devices. Advances in Materials Science 17 (2017) 5-17.
  • 11. Shitole P. P., Gawande S. H., Desale G. R., Nandre B. D., Effect of impacting particle kinetic energy on slurry erosion wear. Journal of Bio-and Tribo-Corrosion 1 (2015) 1–9.
  • 12. Desale G.R., Gandhi B.K., Jain S.C., Slurry erosion of ductile materials under normal impact condition. Wear, 264 (2008) 322-330.
  • 13. Grewal H. S., Agrawal A., Singh H., Shollock B. A., Slurry erosion performance of Ni-Al2O3 based thermal-sprayed coatings: Effect of angle of impingement. Journal of Thermal Spray Technology, 23 (2014) 389–401.
  • 14. Grewal H. S., Agrawal A., Singh H., Slurry erosion mechanism of hydroturbine steel: Effect of operating parameters. Tribolology Letters, 52 (2013) 287–303.
  • 15. Lathabai S., Pender D. C., Microstructural influence in slurry erosion of ceramics. Wear, 189 (1995) 122–135.
  • 16. Thakur L., Arora N., A comparative study on slurry and dry erosion behaviour of HVOF sprayed WC-CoCr coatings. Wear, 303 (2013).
  • 17. Paul C.P., Gandhi B.K., Bhargava P., Dwivedi D.K., Kukreja L.M., Cobalt-Free Laser Cladding on AISI Type 316L Stainless Steel for improved cavitation and slurry e rosion Wear Behavior. Journal of Materials Engineering and Performance, 23 (2014) 4463-4471.
  • 18. Hejwowski T., Nowoczesne powłoki nakładane cieplnie odporne na zużycie ścierne i erozyjne.Politechnika Lubelska, Lublin, 2013, (in Polish).
  • 19. Clark H. M., Hawthorne H. M., Xie Y., Wear rates and specific energies of some ceramic, cermet and metallic coatings determined in the Coriolis erosion tester. Wear, 233–235 (1999) 319–327.
  • 20. Santa J.F., Baena J.C., Toro A., Slurry erosion of thermal spray coatings and stainless steels for hydraulic machinery. Wear 263 (2007) 258–264.
  • 21. Santa J.F., Espitia L.A., Blanco J.A., Romo S.A., Toro A., Slurry and cavitation erosion resistance of thermal spray coatings. Wear, 267 (2009) 160–167.
  • 22. Mann B.S., High-energy particle impact wear resistance of hard coatings and their application in hydroturbines. Wear, 237 (2000) 140–146.
  • 23. Mann B.S., Arya V., Abrasive and erosive wear characteristics of plasma nitriding and HVOF coatings: Their application in hydro turbines. Wear, 249 (2001) 354-360.
  • 24. Romo S.A., Santa J.F., Giraldo J.E., Toro A., Cavitation and high-velocity slurry erosion resistance of welded Stellite 6 alloy. Tribology International, 47 (2012) 16-24.
  • 25. Hutchings I.M., Tribology: Friction and Wear of Engineering Materials. Edward Arnold, London, 1992.
  • 26. Thakur P.A., Khairnar H.S., Deore E.R., More S.R., Development of slurry jet erosion tester to simulate the erosion wear due to solid-liquid mixture. International Journal of Novel Research in Engineering and Science, 2 (2015) 14-20.
  • 27. Saleh B., Ahmed S.M., Slurry erosion-corrosion of carburized AISI 5117 steel. Tribolology Letters, 51 (2013) 135-142.
  • 28. Zhao H.X., Goto H., Matsumura M., Takahashi T., Yamamoto M., Slurry erosion properties o ceramic coatings. Wear, 233-235 (1999) 608-614.
  • 29. Fang Q., Xu H., Sidky P.S., Hocking M.G., Erosion of ceramic materials by a sand/water slurry jet. Wear, 224 (1999) 183-193.
  • 30. Laguna-Camacho J.R., Marquina-Chávez A., Méndez-Méndez J.V., Vite-Torres M., Gallardo-Hernández E.A., Solid particle erosion of AISI 304, 316 and 420 stainless steels. Wear, 301 (2013) 398-405.
  • 31. Basha S. S., Periasamy V. M., Kamaraj M., Slurry erosion resistance of laser-modified 16Cr – 5Ni stainless steel. International Journal of ChemTech Research, 6 (2014) 691–704.
  • 32. de Bree S., Rosenbrand W., de Gee A., On the erosion resistance in water-sand mixtures of steels for application in slurry pipelines. Proc. 8th Int. Conf. Hydraulic Transport of Solids in Pipes, BHRA Fluid Engineering, Johannesburg, 1982, Paper C3.
  • 33. Fuyan L., Hesheng S., The effect of impingement angle on slurry erosion. Wear, 141 (1991) 279-289.
  • 34. Gandhi B.K., Singh S.N., Seshadri V., Study of the parametric dependence of erosion wear for the parallel flow of solid-liquid mixtures. Tribology International, 32 (1999) 275-282.
  • 35. Gupta R., Singh S. N., Sehadri V., Prediction of uneven wear in a slurry pipeline on the basis of measurements in a pot tester. Wear, 184 (1995) 169–178
  • 36. Lin F. Y., Shao H. S., Effect of impact velocity on slurry erosion and a new design of a slurry erosion tester. Wear, 143 (1991) 231–240.
  • 37. Thapa B., Sand erosion in hydraulic machinery. PhD Thesis, Norwegian University of Science and Technology (NTNU), 2004.
  • 38. Levy A.V., Yau P., Erosion of steels in liquid slurries. Wear, 98 (1984) 163-182.
  • 39. Nguyen Q. B Lim C.Y.H., Nguyen V.B., Wan Y.M., Nai B., Zhang Y.W., Gupta M., Slurry erosion characteristics and erosion mechanisms of stainless steel. Tribology International, 79 (2014) 1–7.
  • 40. Hawthorne H.M., Some Coriolis slurry erosion test developments. Tribology International, 35 (2002) 625-630.
  • 41. Clark H.M., Tuzson J., Wong K.K., Measurements of specific energies for erosive wear using a Coriolis erosion tester. Wear 241 (2000) 1-9.
  • 42. Singh G., Virdi R. L., Goyal K., Experimental investigation of slurry erosion behaviour of hard faced AISI 316L Stainless Steel. Universal Journal of Mechanical Engineering 3 (2015) 52-56.
  • 43. Grewal H. S., Arora H. S., Agrawal A., Singh H., Mukherjee S., Slurry erosion of thermal spray coatings: Effect of sand concentration. Procedia Engineering 68 (2013) 484–490.
  • 44. Turenne S., Fiset M., Masounave J., The effect of sand concentration on the erosion of materials by a slurry jet. Wear, 133 (1989) 95-106.
  • 45. Prasad B.K., Jha A.K., Modi O.P., Yegneswaran A.H., Effect of sand concentration in the medium and travel distance and speed on the slurry wear response of a zinc-based alloy alumina particle composite. Tribolology Letters, 17 (2004) 301-304.
  • 46. Burnett A.J., De Silva S.R., Reed A.R., Comparisons between “sand blast” and “centripetal effect accelerator” type erosion testers. Wear, 186-187 (1995) 168-178.
  • 47. Kleis. I, Kulu P., Solid Particle Erosion. [In] Influence of Particle Concentration. Springer-Verlag London Limited, 2008, 24-27.
  • 48. Bong E.Y., Parthasarathy R., Wu J., Eshtiaghi N., Effect of baffles on solid-liquid mass transfer coefficient in high solid concentration mixing. Chemeca 2012: Quality of life through chemical engineering, Wellington, New Zealand, 2012, 1870- 1880.
  • 49. Shehadeh M., Anany M., Saqr K.M., Hassan I., Experimental investigation of erosion corrosion phenomena in a steel fitting due to plain and slurry seawater flow. International Journal of Mechanical and Materials Engineering, 9 (2014) 1-9.
  • 50. Dabirian R., Mohan R., Shoham O., Kouba G., Critical sand deposition velocity for gas liquid stratified flow in horizontal pipes. Journal of Natural Gas Science and Engineering, 33 (2016) 527-536.
  • 51. Bartosik A., Influence of coarse-dispersive solid phase on the ‘particles–wall’ shear stress in turbulent slurry flow with high solid concentration. The Archive of Mechanical Engineering, 57 (2010) 45-68.
  • 52. Bjordal M., Bardal E., Rogne T., Eggen T.G., Combined erosion and corrosion of thermal sprayed WC and CrC coatings. Surface and Coatings Technology 70 (1995) 215-220.
  • 53. Padhy M.K., Saini R.P., Effect of size and concentration of silt particles on erosion of Pelton turbine buckets. Energy 34 (2009) 1477-1483.
  • 54. Elkholy A., Prediction of abrasion wear for slurry pump materials. Wear, 84 (1983) 39-49.
  • 55. Lindgren M., Perolainen J., Slurry pot investigation of the influence of erodent characteristics on the erosion resistance of austenitic and duplex stainless steel grades. Wear, 319 (2014) 38-48.
  • 56. Zitoun K., Sastry S., Guezennec Y., Investigation of three dimensional interstitial velocity, solids motion, and orientation in solid–liquid flow using particle tracking velocimetry. International Journal of Multiphase Flow, 27 (2001) 1397-1414.
  • 57. Yang J.-Z., Fang M.-H., Zhao-Hui Huang Z.-H., Hu X.-Z., Liu Y.-G., Sun H.-R., Huang J.-T., Li X.-Ch., Solid particle impact erosion of alumina-based refractories at elevated temperatures.Journal of the European Ceramic Society 32 (2012) 283–289.
  • 58. Sundararajan G., Roy M., Solid particle erosion behavior of metallic materials at room and elevated temperatures Tribology International, 30 (1997) 339-359.
  • 59. Wang X., Fang M., Zhang L.-C., Ding H., Liu Y.-G., Huang Z., Huang S., Yang J., Solid particle erosion of alumina ceramics at elevated temperature. Materials Chemistry and Physics, 139 (2013) 765-769.
  • 60. Sarlin E., Lindgren M., Suihkonen R., Siljander S., Kakkonen M., Vuorinen J., High-temperature slurry erosion of vinylester matrix composites – The effect of test parameters. Wear, 328-329 (2015) 488-497.
  • 61. Stack M.M., Pungwiwat N., Slurry erosion of metallics, polymers, and ceramics: particle size effects. Materials Science and Technology 15 (1999) 337-344.
  • 62. Gandhi B.K., Borse S.V., Nominal particle size of multi-sized particulate slurries for evaluation of erosion wear and effect of fine particles. Wear, 257 (2004) 73-79.
  • 63. Desale G.R., Gandhi B.K., Jain S.C., Particle size effects on the slurry erosion of aluminium alloy (AA 6063). Wear, 266 (2009) 1066-1071.
  • 64. Sheldon G.L., Finnie I., On the ductile behaviour of nominally brittle materials during erosive cutting. Journal of Engineering for Industry, 88 (1966) 387-392.
  • 65. Stachowiak G.W., Batchelor A.W., Engineering Tribology (fourth edition). [In] Abrasive, Erosive and Cavitation Wear. Elsevier Butterworth-Heinemann, 2014, 525-576.
  • 66. Lynn R.S., Wong K.K., Clark H.M., On the particle size effect in slurry erosion. Wear, 149 (1991) 55-71.
  • 67. Stachowiak G.W., Particle angularity and its relationship to abrasive and erosive wear. Wear, 241 (2000) 214-219.
  • 68. Bahadur S., Badruddin R., Erodent particle characterization and the effect of particle size and shape on erosion. Wear, 138 (1990) 189-208.
  • 69. Desale G.R., Gandhi B.K., Jain S.C., Effect of physical properties of solid particle on erosion wear of ductile materials. Porc. of World Tribology Congress III, Washington, D.C., USA, 2005, 149-150.
  • 70. Raadnui S., Wear particle analysis - Utilization of quantitative computer image analysis: A review. Tribology International, 38 (2005) 871-878.
  • 71. Bouwman A.M., Bosma J.C., Vonk P., Wesselingh J. (Hans) A., Frijlink H.W., Which shape factor(s) best describe granules?. Powder Technology, 146(2004) 66-72.
  • 72. Roylance B.J., Raadnui S., The morphological attributes identifying wear mechanisms of wear particles their role in identifyinf wear mechanisms. Wear 175 (1994) 115-121.
  • 73. Cox E.P., A method of assigning numerical and percentage values to the degree of roundned of sand grains. Journal of Palentology, 1 (1927) 179-183.
  • 74. Al-Bukhaiti M.A., Abouel-Kasem A., Emara K.M., Ahmed S.M., Particle shape and size effects on slurry erosion of AISI 5117 steels. Journal of Tribology, 138 (2016).
  • 75. Chen Q., Li D.Y., Computer simulation of solid particle erosion. Wear, 254 (2003) 203-210.
  • 76. Singh J., Kumar S., Mohapatra S.K, Kumar S., Shape simulation of solid particles by digital interpretations of scanning electron micrographs using IPA technique. Materials Today: Proceedings, 5 (2018) 17786–17791.
  • 77. Lathabai S., Effect of grain size on the slurry erosive wear of Ce-TZP ceramics. Scripta mater., 43 (2000) 465-470.
  • 78. Shetty D.K., Wright I.G., Stropki J.T., Slurry erosion of WC-Co cermets and ceramics. ASLE Transactions, 28 (1985) 123-133.
  • 79. Wood R.J.K., Mellor B.G., Binfield M.L., Sand erosion performance of detonation gun applied tungsten carbide/cobalt-chromium coatings. Wear, 211 (1997) 70-83.
  • 80. Feng Z., Ball A., The erosion of four materials using seven erodents-towards an understanding. Wear, 233-235 (1999) 674-684.
  • 81. Wang Y-F., Yang Z-G., Finite element model of erosive wear on ductile and brittle materials.Wear 265 (2008) 871-878.
  • 82. Javaheri V., Porter D., KuokkalaV-T., Slurry erosion of steel – Review of tests, mechanisms and materials. Wear, 408-409 (2018) 248-273.
  • 83. Mellali M., Grimaud A., Leger A.C., Fauchais P., Lu J., Alumina grit blasting parameters for surface preparation in the Plasma Spraying Operation. Journal of Thermal Spray Technology, 6 (1992) 217-227.
  • 84. Syamsundar C., Chatterjee D., Kamaraj M., Maiti A.K., Erosion Characteristics of Nanoparticle-Reinforced Polyurethane Coatings on Stainless Steel Substrate. J. Mater. Eng. Perform., 24 (2015) 1391–1405.
  • 85. Shipway P.H., Hutchings I.M., The role of particle properties in the erosion of brittle materials. Wear, 193 (1996) 105-113.
  • 86. Tsai W., Humphrey J.A.C., Cornet I., Levy A.V. Experimental measurement of accelerated erosion in a slurry pot tester. Wear, 68 (1981) 289-303.
  • 87. Levy A.V., The solid particle erosion behavior of steel as a function of microstructure. Wear, 68 (1981) 269-287.
  • 88. Gadhikar A.A., Sharma A., Goel D.B., Sharma C.P., Effect of carbides on erosion resistance of 23-8-N steel. Bull. Mater Sci. 37 (2014) 315–319.
  • 89. Kumar A., Sharma A., Goel S.K., Effect of heat treatment on microstructure, mechanical properties and erosion resistance of cast 21-4-N nitronic steel. SOJ Mater. Sci. Eng., 4 (2016) 1–5.
  • 90. Meng H.C., Ludema K.C., Wear models and predictive equations: their form and content. Wear, 181-183 (1995) 443-457.
  • 91. Wang G.R., Chu F., Tao S.Y., Jiang L., Zhu H., Optimization design for throttle valve of managed pressure drilling based on CFD erosion simulation and response surface methodology. Wear 338-339 (2015) 114-121.
  • 92. Zhang J., Kang J., Fan J., Gao J., Research on erosion wear of high-pressure pipes during hydraulic fracturing slurry flow. Journal of Loss Prevention in the Process Industries, 43 (2016) 438-448.
  • 93. Singh J., Singh J.P., Singh M., Szala M., Computational analysis of solid particle-erosion produced by bottom ash slurry in 90° elbow. CMES’18, MATEC Web Conf., 252 (2019) 04008.
  • 94. Hassan M.A., El-Sharief M.A., Aboul-Kasem A., Ramesh S., Purbolaksono J.,A fuzzy model for evaluation and prediction of slurry erosion of 5127 steels. Materials and Design, 39 (2012) 186-191.
  • 95. Hernik B., Pronobis M., Wejkowski R., Wojnar W., Experimental verification of a CFD model intended for the determination of restitution coefficients used in erosion modelling. WTiUE 2016, E3S Web of Conferences, 13 (2017) 05001.
  • 96. Nicholls J.R., Coatings and hardfacing alloys for corrosion and wear resistance in diesel engines. Mater. Sci. Technol., 10 (1994) 1002–1012.
  • 97. Bhushan B., Fundamentals of Tribology and Bridging the Gab between Macro- and Micro/Nanoscale. B. Bhushan [ed.], Kluwer Academic Publishers, Netherlands, 2014.
  • 98. Carter C.B., Norton M.G., Ceramic Materials. Springer New York, New York, 2013.
  • 99. Preece C.M., Macmilla N.H., Erosion. Ann. Rev. Mater. Sci., 7 (1977) 95–121.
  • 100. Bhandari S., Singh H., Kumar H., Rastogi V., Slurry erosion performance study of detonation gun-sprayed WC-10Co-4Cr coatings on CF8M steel under hydro-accelerated conditions. J. Therm. Spray Technol. 21 (2012) 1054–1064.
  • 101. Quinn T.F.J., The role of wear in the failure of common tribosystems. Wear, 100 (1984) 399–436.
  • 102. Larson J.M., Jenkins L.F., Narasimhan S.L., Belmore J.E., Engine Valves-Design and Material Evolution. J. Eng. Gas Turbines Power 109 (1987) 355-361.
  • 103. Zahavi J., Schmitt G.F., Solid particle erosion of polymeric coatings. Wear, 71 (1981) 191–210.
  • 104. Lima C.R.C., Mojena M.A.R., Della Rovere C.A., de Souza N.F.C., Fals H.D.C., Slurry erosion
  • and corrosion behavior of some engineering polymers applied by low-pressure flame spray. J. Mater. Eng. Perform., 25 (2016) 4911–4918.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-97f7e392-cf66-442d-8eba-e40b75ed4594
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.