PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Membranes in water and wastewater disinfection : review

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Membrany w dezynfekcji wody i ścieków : przegląd literatury
Języki publikacji
EN
Abstrakty
EN
Production of sanitary safe water of high quality with membrane technology is an alternative for conventional disinfection methods, as UF and MF membranes are found to be an effective barrier for pathogenic protozoa cysts, bacteria, and partially, viruses. The application of membranes in water treatment enables the reduction of chlorine consumption during final disinfection, what is especially recommended for long water distribution systems, in which microbiological quality of water needs to be effectively maintained. Membrane filtration, especially ultrafiltration and microfiltration, can be applied to enhance and improve disinfection of water and biologically treated wastewater, as ultrafiltration act as a barrier for viruses, bacteria and protozoa, but microfiltration does not remove viruses. As an example of direct application of UF/MF to wastewater treatment, including disinfection, membrane bioreactors can be mentioned. Additionally, membrane techniques are used in removal of disinfection byproducts from water. For this purpose, high pressure driven membrane processes, i.e. reverse osmosis and nanofiltration are mainly applied, however, in the case of inorganic DBPs, electrodialysis or Donnan dialysis can also be considered.
PL
Filtracja membranowa, szczególnie ultrafiltracja (UF) i mikrofiltracja (MF), może wspomóc i polepszyć proces dezynfekcji wody i ścieków oczyszczonych biologicznie, ponieważ membrana stanowi barierę dla wirusów, bakterii i pierwotniaków. Przykładem bezpośredniego zastosowania membran UF/MF do oczyszczania ścieków, w tym ich dezynfekcji, są bioreaktory membranowe. Techniki membranowe stosuje się ponadto do usuwania ze środowiska wodnego ubocznych produktów dezynfekcji (UPD). Wykorzystuje się tutaj przede wszystkim wysokociśnieniowe procesy membranowe, tj. odwróconą osmozę i nanofiltrację, chociaż w przypadku nieorganicznych UPD brane są również pod uwagę elektrodializa i dializa Donnana.
Rocznik
Strony
3--18
Opis fizyczny
Bibliogr. 76 poz., rys., tab., wykr.
Twórcy
  • Institute of Environmental Engineering, Polish Academy of Sciences, Poland, Silesian University of Technology, Poland
  • Silesian University of Technology, Poland, Institute of Water and Wastewater Engineering
  • Cardinal Stefan Wyszynski University in Warsaw, Poland
  • Silesian University of Technology, Poland, Institute of Water and Wastewater Engineering
Bibliografia
  • 1. Ann (2017). Regulation of the Minister of Health of 7 December 2017, on the quality of water intended for human consumption, Dz.U. poz. 2294. (in Polish)
  • 2. Bodzek, M., Konieczny, K. & Kwiecinska, A. (2011). Application of membrane processes in drinking water treatment - state of art, Desalination and Water Treatment, 35, pp. 164-184.
  • 3. Bodzek, M. & Konieczny, K. (2011). Membrane techniques in the removal of inorganic anionic micro-pollutants from water environment-state of the art, Archives of Environmental Protection, 37(2), pp. 15-29.
  • 4. Bodzek, M. & Konieczny, K. (1998). Comparision of ceramic and capillary membranes in the treatment of natural water by means of ultrafiltration and microfiltration, Desalination, 119, pp. 191-198.
  • 5. Bodzek, M. (2013). An overview of the possibility of membrane techniques application in the removal of microorganisms and organic pollutants from aquatic environment, Inżynieria i Ochrona Środowiska, 16(1), 5-37. (in Polish)
  • 6. Bodzek, M. (2015). Membrane technologies for the removal of micropollutants in water treatment, in: Advances in Membrane Technologies for Water Treatment: Materials, Processes and Applications, Basile, A., Cassano, A. & Rastogi, N.K. (eds.), Elsevier Science, Woodhead Publishing Ltd., Cambridge, pp. 465-515.
  • 7. Bodzek, M., Rajca, M., Tytła, M. & Tomaszewska, B. (2018). Integration of nanofiltration and reverse osmosis in desalination of mine water, Desalination and Water Treatment, 128, pp. 96-105.
  • 8. Bogacki, P.B. & Al-Hazmi, H. (2017). Automotive fleet repair facility wastewater Treatment using air/ZVI and air/ZVI/H2O2 processes, Archives of Environmental Protection, 43(3), pp. 24-31.
  • 9. Butler, R., Godley, A., Lytton, L. & Cartmell, E. (2005). Bromate environmental contamination, Review of impact and possible treatment, Critical Reviews in Environmental Science and Technology, 35, pp. 193-217.
  • 10. Cameron, R. & Smith, K. (2014). Virus clearance methods applied in bioprocessing operations: an overview of selected inactivation and removal methods, Pharmaceutical Bioprocessing, 2, pp. 75-83.
  • 11. Campos, C.J.A., Avant, J., Lowther, J., Till, D. & Lees, D.N. (2016). Human norovirus in untreated sewage and effluents from primary, secondary and tertiary treatment processes, Water Research, 103, pp. 224-232.
  • 12. Chalatip, R., Chawalit, R. & Nopawan, R. (2009). Removal of haloacetic acids by nanofiltration, Journal of Environmental Sciences, 21, pp. 96-100.
  • 13. Chen, D. & Chen, Q. (2016). Virus retentive filtration in biopharmaceutical manufacturing, PDA Letters, pp. 20-22.
  • 14. Collivignarelli, M.C., Abbá, A., Benigna, I. Sorlini, S. & Torretta V. (2018). Overview of the main disinfection processes for wastewater and drinking water treatment plants, Sustainability, 10, 86.
  • 15. Da Silva, A., Le Saux, J.-C., Parnaudeau, S., Pommepuy, M., Elimelech, M. & Le Guyader, F. (2007). Evaluation of removal of noroviruses during wastewater treatment, using real-time reverse transcription-PCR: Different behaviours of genogroups I and II, Water Research, 73, pp. 7891-7897.
  • 16. Deowan, S.A., Bouhadjar, S.I. & Hoinkis, J. (2015). Membrane bioreactors for water treatment, in: Advances in membrane technologies for water treatment: materials, processes and applications, Basile, A. Cassano, A. & Rastogi, N.K. (eds.), Elsevier Science, Woodhead Publishing Ltd., Cambridge, pp. 155-184.
  • 17. Fiksdal, L. & Leiknes, T. (2006). The effect of coagulation with MF/UF membrane filtration for the removal of virus in drinking water, Journal of Membrane Science, 279, pp. 364-371.
  • 18. Francy, D.S., Stelzer, E.A., Bushon, R.N., Brady, A.M.G., Williston, A.G., Riddell, K.R., Borchardt, M.A., Spencer, S.K. & Gellner, T.M. (2012). Comparative effectiveness of membrane bioreactors, conventional secondary treatment, and chlorine and UV disinfection to remove microorganisms from municipal wastewaters, Water Research, 46, pp. 4164-4178.
  • 19. Frohnert, A., Kreißel, K., Lipp, P., Dizer, H., Hambsch, B., Szewzyk, R. & Selinka, H.-C. (2015). Removal of surrogate bacteriophages and enteric viruses from seeded environmental waters using a semi-technical ultrafiltration unit, Food and Environmental Virology, 7(2), pp. 173-182.
  • 20. Hai, F.I., Riley, T., Shawkat, S., Magram, S.F. & Yamamoto, K. (2014). Removal of pathogens by membrane bioreactors: a review of the mechanisms, influencing factors and reduction in chemical disinfectant dosing, Water, 6, pp. 3603-3630.
  • 21. Harb, M. & Hong, P. Y. (2017). Molecular-based detection of potentially pathogenic bacteria in membrane bioreactor (MBR) systems treating municipal wastewater: a case study, Environmental Science and Pollution Research, 24, pp. 5370-5380.
  • 22. Hassan, M., Abou-Zeid, R., Hassan, E., Berglund, L., Aitomäki, Y. & Oksman, K. (2017). Membranes based on cellulose nanofibers and activated carbon for removal of Escherichia coli bacteria from water, Polymers, 9, 335.
  • 23. Huang, H., Young, T.A., Schwab, K.J. & Jacangelo, J.G., (2012). Mechanisms of virus removal from secondary wastewater effluent by low pressure membrane filtration, Journal of Membrane Science, 409-410, pp. 1-8.
  • 24. Huang, W. & Cheng, Y. (2008). Effect of characteristics of activated carbon on removal of bromate, Separation and Purification Technology, 59, pp. 101-107.
  • 25. Jastrzębski, M. & Ilnicki, J. (2016). Effects of water filtration by means of membrane technology, paper presented at the Conference on Membranes and Membrane Processes in Environmental Protection (MEMPEP 2016), Zakopane, Poland, 15-19 June 2016.
  • 26. Jong, J., Lee, J., Kim, J., Hyun, K., Hwang, T., Park, J. & Choung, Y. (2010). The study of pathogenic microbial communities in graywater using membrane bioreactor, Desalination, 250, pp. 568-572.
  • 27. Kołtuniewicz, A.B. & Drioli, E. (2008). Membranes in clean technologies, Wiley-VchVerlag GmbH, Weinheim 2008.
  • 28. Konieczny, K. (2015). Effectiveness of wastewater treatment with the use of the biological membrane reactors, Rocznik Ochrona Środowiska, 17, pp. 1034-1052. (in Polish)
  • 29. Kosiol, P., Hansmann, B., Ulbricht, M. & Thom, V. (2017). Determination of pore size distributions of virus filtration membranes using gold nanoparticles and their correlation with virus retention, Journal of Membrane Science, 533, pp. 289-301.
  • 30. Kowalska, M., Dudziak, M. & Bohdziewicz, J. (2011). Biodegradation of haloacetic acids in bioreactor with polyamide, enzymatic ultrafiltration membrane, Inżynieria i Ochrona Środowiska, 14, pp. 257-266. (in Polish)
  • 31. Kwaśny, J.A., Kryłów, M. & Balcerzak W. (2018). Oily wastewater treatment using a zirconia ceramic membrane - a literature review, Archives of Environmental Protection, 44(3), pp. 3-10.
  • 32. Kuo, D.H.W., Simmons, F.J., Blair, S., Hart, E., Rose, J.B. & Xagoraraki, I. (2010). Assessment of human adenovirus removal in a full-scale membrane bioreactor treating municipal wastewater, Water Research, 44, pp. 1520-1530.
  • 33. Larson, A.M., Hsu, B.B., Rautaray, D., Haldar, J., Chen, J. & Klibanov, A.M. (2011). Hydrophobic polycationic coatings disinfect poliovirus and rotavirus solutions, Biotechnology and Bioengineering, 108, pp. 720-723.
  • 34. Li, D., Zeng, S., Gu, A.Z., He, M. & Shi, H. (2013). Inactivation, reactivation and regrowth of indigenous bacteria in reclaimed water after chlorine disinfection of a municipal wastewater treatment plant, Journal of Environmental Sciences, 25, pp. 1319-1325.
  • 35. Listiarini, K., Tor, J.T., Sun, D.D. & Leckie, J.O., (2010). Hybrid coagulation-nanofiltration membrane for removal of bromate and humic acid in water, Journal of Membrane Science, 365, pp. 154-159.
  • 36. Lu, R., Li, Q., Yin, Z., Xagoraraki, I., Tarabara, V.V. & Nguyen, T.H. (2016). Effect of virus influent concentration on its removal by microfiltration: the case of human adenovirus, Journal of Membrane Science, 497, pp. 120-127.
  • 37. Lu, R., Mosiman, D. & Nguyen, T.H. (2013). Mechanisms of MS2 bacteriophage removal by fouled ultrafiltration membrane subjected to different cleaning methods, Environmental Science & Technology, 47, pp. 13422-13429.
  • 38. Lu, R., Zhang, C., Piatkovsky, M., Ulbricht, M., Herzberg, M. & Nguyen, T.H. (2017). Improvement of virus removal using ultrafiltration membranes modified with grafted zwitterionic polymer hydrogels, Water Research, 116, pp. 86-94.
  • 39. Madaeni, S.S., Fane, A.G. & Grohmann, G.S. (1995). Virus removal from water and wastewater using membranes, Journal of Membrane Science, 102, (1-3), pp. 65-75.
  • 40. Meyn, T., Leiknes, T. & König, A. (2012). MS2 removal from high NOM content surface water by coagulation - ceramic microfiltration, for potable water production, AIChE Journal, 58(7), pp. 2270-2281.
  • 41. Michałkiewicz, M., Jeż-Walkowiak, J., Dymaczewski, Z. & Sozański, M. (2011). Wastewater disinfection, Inżynieria Ekologiczna, 24, pp. 38-51. (in Polish)
  • 42. Modise, C.M. (2003). Use of polymeric microfiltration membranes to remove microorganisms and organic pollutants from primary sewage effluent. Master of Science thesis, University of Pittsburg, USA.
  • 43. Moslemi, M., Davies, S.H. & Masten, S.J. (2012). Rejection of bromide and bromate ions by a ceramic membrane, Environmental Engineering Science, 29, pp. 1092-1096.
  • 44. Mukherjee, M. & De, S. (2017). Investigation of antifouling and disinfection potential of chitosan coated iron oxide-PAN hollow fiber membrane using Gram-positive and Gram-negative bacteria, Materials Science and Engineering C, 75, pp. 133-148.
  • 45. Nawrocki, J. (2010). Water treatment. Chemical and biological processes, Wydawnictwo Naukowe PWN, Warszawa, Poland 2010. (in Polish)
  • 46. Noworyta, A. & Trusek-Hołownia, A. (2006). Membrane reactor. I. The possibilities and expectations, Prace Naukowe Instytutu Inżynierii Chemicznej PAN, 7, pp. 5-19. (in Polish)
  • 47. Olanczuk-Neyman, K., Stosik-Fleszar, H. & Mikołajski, S. (2001). Elimination of indicator bacteria removal in wastewater treatment processes, Polish Journal of Environmental Studies, 10 (6), pp. 457-461.
  • 48. Ottoson, J., Hansen, A., Bjorlenius, B., Norder, H. & Stenstrom, T.A. (2006). Removal of viruses, parasitic protozoa and microbial indicators in conventional and membrane processes in a wastewater pilot plant, Water Research, 40, pp. 1449-1457.
  • 49. Quant, B., Bray, R, Olanczuk-Neyman, K., Jankowska, K., Kulbat, E., Łuczkiewicz, A., Sokołowska, A. & Fudala, S. (2009). Research on the disinfection of treated wastewater discharged into surface waters, Monografie Komitetu Inżynierii Środowiska PAN, 61, pp. 19-28. (in Polish)
  • 50. Rayfield, W. J., Roush, D.J., Chmielowski, R.A., Tugcu, N., Barakat, S. & Cheung, J.K. (2015). Prediction of viral filtration performance of monoclonal antibodies based on biophysical properties of feed, AIChE Journal, 31, pp. 765-774.
  • 51. Shang, C., Wong, H.M. & Chen, G. (2005). Bacteriophage MS2 removal by submerged membrane bioreactor, Water Research, 39, pp. 4211-4219.
  • 52. Shi, X., Tal G., Hankins, N.P. & Gitis V. (2014). Fouling and cleaning of ultrafiltration membranes: A review, Journal of Water Process Engineering, 1, pp. 121-138.
  • 53. Simmons, F.J. & Xagoraraki, I. (2011). Release of infectious human enteric viruses by full-scale wastewater utilities, Water Research, 45 (12), pp. 3590-3598.
  • 54. Simmons, F.J., Kuo, D.H.W. & Xagoraraki, I. (2011). Removal of human enteric viruses by a full-scale membrane bioreactor during municipal wastewater processing, Water Research, 45, pp. 2739-2750.
  • 55. Sinclair, T.R., Robles, D., Raza, B., van den Hengel, S., Rutjes, S.A., de Roda Husman, A.M., de Grooth, J., de Vos, W.M. & Roesink, H.D.W. (2018). Virus reduction through microfiltration membranes modified with a cationic polymer for drinking water applications, Colloids and Surfaces A, 551, pp. 33-41.
  • 56. Szewczyk, K.W. (2009). Treatment of wastewater in membrane bioreactors, in: Membrane and membrane techniques - from the idea to the industry, Szwast, M. (ed.), Polymem Ltd., Warszawa 2009. (in Polish)
  • 57. Taylor, J.S. & Wiesner, M. (2000). Membranes, in: Membrane Processes in Water Quality and Treatment, Letterman R.D. (ed.), McGraw Hill, New York 2000.
  • 58. Till, S. & Mallia, H. (2001). Membrane bioreactors: wastewater treatment applications to achieve high quality effluent, paper presented at 64th Annual Water Industry Engineers and Operators’ - Bendigo, Australia, 5-6 September, 2001, pp. 57-65.
  • 59. Trusek-Hołownia, A. (2009). The membrane bioreactor - impact of key parameters for the intensification of bioprocesses, Monografie Komitetu Inżynierii Środowiska PAN, 62, pp. 59-75. (in Polish)
  • 60. Uyak, V., Koyuncu, I., Oktem, I., Cakmakci, M. & Toroz, I. (2008). Removal oftrihalomethanes from drinking water by nanofiltration membranes, Journal of Hazardous Materials, 152, pp. 789-794.
  • 61. Van den Akker, B., Trinh, T., Coleman, H.M., Stuetz, R.M., Le-Clech, P. & Khan S.J. (2014). Validation of a full-scale membrane bioreactor and the impact of membrane cleaning on the removal of microbial indicators, Bioresource Technology, 155, pp. 432-437.
  • 62. Vergara, G.G.R.V., Rose, J.B. & Gin, K.Y.H. (2016). Risk assessment of noroviruses and human adenoviruses in recreational surface waters, Water Research, 103, pp. 276-282.
  • 63. Wang, G.S., Deng, Y.C. & Lin, T.F. (2007). Cancer risk assessment from trihalomethanes in drinking water, Science of the Total Environment, 387, pp. 86-95.
  • 64. Wang, Y., Hammes, F., Duggelin, M. & Egli, T. (2008). Influence of size, shape and flexibility on bacterial passage through micropore membrane filters, Environmental Science & Technology, 42, pp. 6749-6754.
  • 65. Waniek, A., Bodzek, M. & Konieczny, K. (2002). Trihalomethanes removal from water using membrane processes, Polish Journal of Environmental Studies, 11, pp.171-178.
  • 66. Werber, J.R., Osuji, C.O. & Elimelech, M. (2016). Materials for next-generation desalination and water purification membranes, Nature Reviews Materials, 1, 1618.
  • 67. Wiśniewski, J., Kabsch-Korbutowicz, M. & Łakomska, S. (2013). Removal of bromates from water in the anion-exchange process with ion-exchange membrane, Rocznik Ochrony Środowiska, 15, pp. 1260-1273. (in Polish)
  • 68. Wiśniewski, J.A. & Kliber, S. (2009). Bromate removal from aqueous solutions in membrane anion exchange process, Ochrona Środowiska, 31(2), pp. 35-39.
  • 69. Wiśniewski, J.A. & Kliber, S. (2010). Bromate removal from water in electrodialysis process, Monografie Komitetu Inżynierii Środowiska PAN, 66, pp. 305-313. (in Polish)
  • 70. Xu, P., Drows, J.E., Bellona, C., Amy, G., Kim, T.U., Adam, M. & Heberer, T. (2005). Rejection of emerging organic micropollutants in nanofiltration-reverse osmosis membrane applications, Water Environment Research, 77(1), pp. 40-48.
  • 71. Yaman, F.B. & ęakmakci, M. (2016). Seasonal effect and removal of disinfection byproducts from Sakarya River by ozone and membrane processes, International Journal of Advances in Agricultural & Environmental Engineering (IJAAEE), 3, pp. 357-361.
  • 72. Yang, L., She, Q., Wan, M.P., Wang R., Chang, V.W.-Ch. & Tang, C.Y (2017). Removal of haloacetic acids from swimming pool water by reverse osmosis and nanofiltration, Water Research, 116, pp. 116-125.
  • 73. Zanetti, F., De Luca, G. & Sacchetti, R. (2010). Performance of a full-scale membrane bioreactor system in treating municipal wastewater for reuse purposes, Bioresource Technology, 101, pp. 3768-3771.
  • 74. Zazouli, M.A. & Kalankesh, L.R. (2017). Removal of precursors and disinfection by-products (DBPs) by membrane filtration from water, a review, Journal of Environmental Health Science & Engineering, 15, 25.
  • 75. Zhua, B., Clifforda, D.A. & Chellam, S. (2005). Virus removal by iron coagulation-microfiltration, Water Research, 39, pp. 5153-5161.
  • 76. Zimer, A. M., Machado, M.M., Lázaro J.D.C., Iemma, M.R.C., Yamamoto, C.F., Ferreira, C.F., Souza, D.H.F, de Oliveira, C.R. & Pereira, E.C. (2016). Optimized porous anodic alumina membranes for water ultrafiltration of pathogenic bacteria (E. coli), Journal of Nanoscience and Nanotechnology, 16, pp. 6526-6534.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-97f38bb7-1fa8-49c9-923a-f02d847e0217
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.