PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Techno-economic Assessment of Retrofitting Heating, Ventilation, and Air Conditioning System – Case Study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Retrofitting heating, ventilation, and air conditioning (HVAC) systems in existing buildings and applying energy-efficient technologies can significantly reduce energy consumption and greenhouse gases emissions. In this work, two options of HVAC retrofitting were proposed and discussed for the existing heating system of school of engineering at the University of Jordan as a case study. The experimental tests showed that only one of the three diesel boilers work normally while the other two boilers are not efficient, with actual efficiency of 25%. The first retrofitting was to upgrade the existing heating system to a liquefied petroleum gas (LPG) boiler system with estimated annual saving of 29,757 Jordanian dinar (JOD), and a payback period of 3.9 years. The second option for retrofitting was a new HVAC system for the building including heating and air conditioning with a variable refrigerant flow (VRF) system and heat pump chiller. The estimated cost showed that the VRF system was the lowest one in running cost in winter. The diesel boilers had the highest greenhouse gas emissions with an average value of 377.3 tons of CO2 per year, while LPG boilers achieved the second highest emissions of around 279 tons of CO2 per year, whereas the heat pump chiller in winter produced 199 tons of CO2 and the VRF system emitted 180 tons in winter. The LCCA economic analysis was performed for the proposed systems, showing that the LPG boilers system was more feasible than the diesel boilers system, while the VRF system was more feasible than the heat pump chiller system.
Rocznik
Strony
153--168
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
  • Mechanical Engineering Department, The University of Jordan, Queen Rania str. Amman, 11942, Jordan
autor
  • Mechanical Engineering Department, The University of Jordan, Queen Rania str. Amman, 11942, Jordan
  • Mechanical Engineering Department, The University of Jordan, Queen Rania str. Amman, 11942, Jordan
Bibliografia
  • 1. Alahmer, A. and Alsaqoor, S. 2017. Simulation and optimization of multi-split variable refrigerant flow systems Simulation and optimization of multisplit variable refrigerant flow systems, Ain Shams Engineering Journal, (January). doi: 10.1016/j.asej.2017.01.002.
  • 2. Alsaad, M. and Hammad, M. 2011. Heating and air conditioning for residential buildings. Edited by F. Edition.
  • 3. Annex 5: Subsidy level indicators for the case studies. 2009. Available at: https://ec.europa.eu/environment/enveco/mbi/pdf/studies/Annex 5 - Calculations from the case studies.pdf.
  • 4. Atallah, G. and Tarlochan, F. 2021. Comparison between variable and constant refrigerant flow air conditioning systems in arid climate: Life cycle cost analysis and energy savings, Sustainability (Switzerland), 13(18). doi: 10.3390/su131810374.
  • 5. Bhatia, A. 2012. Improving Energy Efficiency of Boiler Systems, CED Engineering, 166(877). Available at: https://pdhonline.com/courses/m166/m166content.pdf [accessed 12/12/2017].
  • 6. Costa, D., Pedro, L. and Coelho, D. 2012. Efficient space heating in a portuguese public building replacement of a liquefied petroleum gas boiler by heat pump, Renewable Energy and Power Quality Journal, 1(10), pp. 1139–1143. doi: 10.24084/repqj10.612.
  • 7. Differences Between Diesel and Petrol | ACEA - European Automobile Manufacturers’ Association. 2016. Available at: https://www.acea.auto/fact/differences-between-diesel-and-petrol/.
  • 8. Engineering ToolBox, 2009. Available at: https://www.engineeringtoolbox.com/co2-emission-fuels-d_1085.html .
  • 9. Environmental Protection Agency. 2022. Available at: https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator.
  • 10. Fuller, S. 2006. WBDG : Life-Cycle Cost Analysis (LCCA) Life-Cycle Cost Analysis (LCCA) WBDG : Life-Cycle Cost Analysis (LCCA), Whole Building Design Guide, (Lcc), pp. 1–11. Available at: http://www.wbdg.org/design/lcca.php?print=1.
  • 11. Hamida, M. B. et al. 2021. Techno-economic assessment of energy retrofitting educational buildings: A case study in Saudi Arabia, Sustainability (Switzerland), 13(1), pp. 1–15. doi: 10.3390/su13010179.
  • 12. Im P., Munk J.D. and Lee J. 2016. Cooling season full and part load performance evaluation of Variable Refrigerant Flow ( VRF ) system using an occupancy simulated research building.
  • 13. Jagarajan, R. et al. 2017. Green retrofitting – A review of current status, implementations and challenges, Renewable and Sustainable Energy Reviews, 67(September 2015), pp. 1360–1368. doi: 10.1016/j.rser.2016.09.091.
  • 14. Jopetrol (2020).
  • 15. Kim, D. et al. 2017. Evaluation of energy savings potential of variable refrigerant flow ( VRF ) from variable air volume ( VAV ) in the U . S . climate locations, Energy Reports, 3, pp. 85–93. doi: 10.1016/j.egyr.2017.05.002.
  • 16. Ligade, J. and Razban, A. 2019. Investigation of Energy E ffi cient Retrofit HVAC Systems for a University : Case Study, 2005.
  • 17. Liquefied Petroleum Gas (LPG) - energypedia.info. 2020. Available at: https://energypedia.info/wiki/Liquefied_Petroleum_Gas_(LPG).
  • 18. Ma Z. et al. 2012. Existing building retrofits: Methodology and state-of-the-art, Energy and Buildings, 55, pp. 889–902. doi: 10.1016/j.enbuild.2012.08.018.
  • 19. Muhammad, N. et al. 2019. Implementation of sustainable energy management programme in, (February).
  • 20. Murugavel, V., & Saravanan, R. 2010. Life cycle cost analysis of waste heat operated absorption cooling systems for building HVAC applications, Proceedings of the Tenth International Conference Enhanced Building Operations.
  • 21. Paczuski, M. et al. 2016. Liquefied Petroleum Gas (LPG) as a Fuel for Internal Combustion Engines, Alternative Fuels, Technical and Environmental Conditions, 13(February 2017). doi: 10.5772/61736.
  • 22. Ministry of Digital Economy and Entrepreneurship, 2018. Available at: https://www.memr.gov.jo/echo-busv3.0/Syst emAssets/56dcb683-2146-4dfd-8a15-b0ce6904f501.
  • 23. Schibuola, L., Scarpa, M. and Tambani, C. . 2017. experimental validation, Journal of Cultural Heritage. doi: 10.1016/j.culher.2017.09.011.
  • 24. Song, K. et al. 2019. Development of an energy saving strategy model for retrofitting existing buildings: A Korean case study, Energies, 12(9). doi: 10.3390/en12091626.
  • 25. Tawalbeh, M. 2019. UNDA project, on “ Up-scaling Energy Efficiency in the residential and services sectors in the Arab Region, (March).
  • 26. Yang, L., Yan, H. and Lam, J. C. 2014. Thermal comfort and building energy consumption implications - A review, Applied Energy, 115, pp. 164–173. doi: 10.1016/j.apenergy.2013.10.062.
  • 27. Zanetti, E. et al. 2019. Building hvac retrofitting using a pv assisted dc heat pump coupled with a pcm heat battery and optimal control algorithm, E3S Web of Conferences, 111(201 9). doi: 10.1051/e3sconf/201911104041.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-97f19722-eab8-4f42-a175-f4c73958bb40
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.