PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Strategie i wyzwania w usuwaniu nanoplastików ze ścieków

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Strategies and challenges in the removal of nanoplastics from wastewater
Języki publikacji
PL
Abstrakty
PL
W obliczu rosnącego problemu zanieczyszczenia środowiska przez mikro- i nanoplastiki, oczyszczalnie ścieków stanowią kluczową linię obrony przed ich przedostawaniem się do naturalnych ekosystemów. Niniejszy artykuł koncentruje się na ogólnej charakterystyce nanoplastików znajdujących się w ściekach oraz ocenia różnorodne metody ich usuwania. Badania skupiają się na procesach takich jak zaawansowane utlenienie chemiczne, metody fizyczne, a także biologiczne metody utleniania, które mogą efektywnie redukować obecność tych trwałych zanieczyszczeń. Wyniki badań podkreślają znaczenie zintegrowanego podejścia do zarządzania nanoplastikami. Technologie oparte na procesach fizycznych są skuteczne w usuwaniu nanoplastików ze ścieków. Techniki zaawansowanego utleniania, mimo wysokiej efektywności, mogą prowadzić do tworzenia toksycznych produktów pośrednich. Metody biologiczne wymagają długotrwałych badań nad optymalizacją i selekcją mikroorganizmów zdolnych do degradacji nanoplastików.
EN
With the growing problem of environmental pollution from micro- and nanoplastics, wastewater treatment plants are an important line of defence against their entry into natural ecosystems. This article focuses on the general characteristics of nanoplastics found in wastewater and evaluates a variety of methods for their removal. The research focuses on processes such as advanced chemical oxidation, physical methods and biological oxidation methods that can effectively reduce the presence of these persistent contaminants. The results highlight the importance of an integrated approach to the management of nanoplastics. Physical process-based technologies are effective in removing nanoplastics from wastewater. Advanced oxidation techniques, although highly effective, can lead to the formation of toxic intermediates. Biological methods require long-term research to optimise and select microorganisms capable of degrading nanoplastics.
Rocznik
Tom
Strony
9--12
Opis fizyczny
Bibliogr. 25 poz., rys.
Twórcy
  • Politechnika Krakowska, Wydział Inżynierii Środowiska i Energetyki
Bibliografia
  • [1] Allan Jacqueline, Belz Susanne, Hoeveler Arnd, Hugas Marta, Okuda Haruhiro, Patri Anil, Rauscher Hubert, Silva Primal, Slikker William, Sokull-Kluettgen Birgit, Tong Weida, Anklam Elke. 2021. Regulatory landscape of nanotechnology and nanoplastics from a global perspective. Regulatory Toxicology and Pharmacology 122, 104885.
  • [2] Batool Asam, Valiyaveettil Suresh. 2021. Surface functionalized cellulose fibers - a renewable adsorbent for removal of plastic nanoparticles from water. Journal of Hazardous Materials 413, 125301.
  • [3] Cavazzoli Simone, Ferrentino Roberta, Scopetani Costanza, Monperrus Mathilde, Andreattola Gianni. 2023. Analysis of micro- and nanoplastics in wastewater treatment plants: key steps and environmental risk considerations. Environmental Monitoring and Assessment 195, 1483.
  • [4] Chen Rong, Qi Mei, Zhang Guohui, Yi Chenggao. 2018. Comparative experiments on polymer degradation technique of produced water of polymer flooding oilfield. IOP Conference Series: Earth and Environmental Science 113, 012208.
  • [5] Gigault Julien, Halle Alexandra, Baudrimont Magalie, Pascal Pierre-Yves, Gauffre Fabienne, Phi Thuy-Linh, Hadri El Hind, Grassl Bruno, Reynaud Stephanie. 2018. Current opinion: What is a nanoplastic? Environmental Pollution 235: 1030-1043.
  • [6] Hernandez M. Laura, Yousefi Nariman, Tufenkji Nathalie. 2017. Are There Nanoplastics in Your Personal Care Products? Environmental Science 6: Technology Letters 4(7): 280-285.
  • [7] Jeong Yeonseo, Gong Gyeongtaek, Lee Hye-Jin, Seong Jihye, Hong Won Seok, Lee Changha. 2023. Transformation of microplastics by oxidative water and wastewater treatment processes: A critical review. Journal of Hazardous Materials 443, 130313.
  • [8] Komisja Europejska. Zalecenie komisji z dn. 18 października 2011r. dotyczące definicji nanomateriału (2011/969/UE). Dziennik Urzędowy Unii Europejskiej. L 275 (2011): 38-40.
  • [9] Koelmas A. Albert, Besseling Ellen, Shim J. Won. 2015. Nanoplastics in the Aquatic Environment. Critical Review. Marine Anthropogenic Litter (ed. Bergmann M. i in.), Springer: 325-340.
  • [10] Luo Yunlong, Naidu Ravi, Feng Cheng. 2024. Toy building bricks as a potential source of microplastics and nanoplastics. Journal of Hazardous Materials 471, 134424.
  • [11] Ma Jie, Chen Fengyuan, Xu Huo, Jiang Hao, Liu Jingli, Li Ping, Chen Chun Ciara, Pan Ke. 2021. Face masks as a source of nanoplastics and microplastics in the environment: Quantification, characterization, and potential for bioaccumulation. Environmental Pollution 288, 117748.
  • [12] Materić Dušan, Kasper-Gielb Anne, Kau Daniela, Anten Marnick, Grelinger Marion, Ludewig Elke, van Sebille Erik, Röckmann Thomas, Holzinger Rupert. 2020. Micro- and Nanoplastics in Alpine Snow: A New Method for Chemical Identification and (Semi)Quantification in the Nanogram Range. Environmental Science ć: Technology 54(4): 2353-2359.
  • [13] Mattsson Karin, Jocic Simonne, Doverbratt lsa, Hansson Lars-Anders. 2018. Microplastic Contamination in Aquatic Environments. Chapter 13 - Nanoplastics in the Aquatic Environment (ed. Eddy Y. Zeng), Elsevier: 379-399.
  • [14] Molina Serena, Ocafia-Biedma Helena, Rodriguez-Saez Laura, Landaburu-Aquirre Junkal. 2023. Experimental Evaluation of the Process Performance of MF and UF Membranes for the Removal of Nanoplastics. Membranes 13, 683.
  • [15] Mofijur M., Ahmed S. F., Rahman Ashrafur, Siddiki Arafat Yasir S. K., Islam Saiful A. B. M., Shahabuddin M., Ong Chyuan Hwai, Mahlia T. M. I., Diavanroodi F., Show Loke Pau. 2021. Source, distribution and emerging threat of micro- and nanoplastics to marine organism and human health: Socio-economic impact and management strategies. Environmental Research 195, 110857.
  • [16] Monikh Fazel Abdolahpur, Hansen Steffen Foss, Vijver Martina G., Kentin Esther, Nielsen Maria Bille, Baun Anders, Syberg Kristian, Lynch Iseult, Valsami-Jones Eugenia, Peijnenburg J. G. M Willie. 2022. Can Current Regulations Account for Intentionally Produced Nanoplastics? Environmental Science Technology 56 (7): 37-41.
  • [17] Murray Audrey, Örmeci Banu. 2020. Removal Effectiveness of Nanoplastics (<400 nm) with Separation Processes Used for Water and Wastewater Treatment. Water 12, 635.
  • [18] Okoffo D. Elvis, Thomas V. Kevin. 2024. Mass quantification of nanoplastics at wastewater treatment plants by pyrolysis-gas chromatography-mass spectrometry. Water Research 254, 121379.
  • [19] Pérez-Reverón Raquel, Álvarez-Méndez J. Sergio, González-Sálamo Javier, Socas-Hernández Cristina, Diaz-Peña J. Francisco, Hernández-Sánchez Cintia, Hernández-Borges Javier. 2023. Nanoplastics in the soil environment: Analytical methods, occurrence, fate and ecological implications. Environmental Pollution 317, 120788.
  • [20] Sun Hongyan, Jiao Ruyuan, Xu Hui,An Guangyu, Wang Dongsheng. 2019. The influence of particle size and concentration combined with pH on coagulation mechanisms. Journal of Environmental Sciences 82: 39-46.
  • [21] Sutrisna Doddy Putu, Riadi Lieke, Buana Pra Cipta, Khoiruddin Khoiruddin, Boopathy Ramaraj, Wenten Gede,. Siagian Utjok W. R. 2024. Membrane and membrane-integrated processes for nanoplastics removal and remediation. Polymer Degradation and Stability 220, 110635.
  • [22] Tiwari Neha, Santhiya Deenan, Sharma Gopal Jai. 2020. Microbial remediation of micro-nano plastics: Current knowledge and future trends. Environmental Pollution 265, 115044.
  • [23] ter Halle Alexandra, Jeanneau Laurent, Martignac Marion, Jardé Emilie, Pedrono Boris, Brach Laurent, Gigault Julien. 2017. Nanoplastic in the North Atlantic Subtropical Gyre. Environmental Science and Technology 51 (23): 1368913697.
  • [24] Wan Hongyi, Shi Ke, Yi Zhiyuan, Ding Peng, Zhuang Linzhou, Mills Rollie, Bhattacharyya Dibakar, Xu Zhi. 2022. Removal of polystyrene nanoplastic beads using gravity-driven membrane filtration: Mechanisms and effects of water matrices. Chemical Engineering Journal 450, 138484.
  • [25] Zhang Yunhai, Wang Xinijie, Li Ying, Wang Hao, Shi Yuexiao, Li Yang, Zhang Yongiun. 2022. Improving nanoplastic removal by coagulation: Impact mechanism of particle size and water chemical conditions. Journal of Hazardous Materials 425, 127962.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-97f07f9b-0fd8-462d-ae73-e89125b7570b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.