Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The development of cyanobacteria and microcystin variation was studied during two years in response to periodical water-level regulation in modified Lake Tomaszne. Before the water entrance from a canal, the biomass of toxigenic cyanobacteria was 0.001-0.33 mg dm-3, the microcystin concentration was below 1 μg dm-3, and three variants of microcystins were detected. After the water entrance from the canal, the biomass of cyanobacteria increased to 1.3-7.1 mg dm-3 with the dominants Aphanizomenon gracile and Dolichospermum planctonicum. After the water discharge from the lake, Planktothrix agardhii reached the highest biomass (2.3-6.6 mg dm-3). During the mass development of toxigenic cyanobacteria, the total microcystin concentrations were mostly higher than 5 μg dm-3 and the number of MC variants increased. Both Pl. agardhii and D. planktonicum accounted for microcystin production. The higher NH4-N concentrations supplied with water from the canal supported the biomass increase of Nostocales, whereas Pl. agardhii mass development was due to the low light intensity and high TP concentrations. Our study revealed that the use of nutrient-rich waters for the water management in the hydromorphologically modified lake supported the persistent development of cyanobacteria species leading to increased amounts of MC and a higher number of their structural variants
Czasopismo
Rocznik
Tom
Strony
223--235
Opis fizyczny
Bibliogr. 58 poz., rys., tab., wykr.
Twórcy
autor
- Department of Botany and Hydrobiology, The John Paul II Catholic University of Lublin, ul. Konstantynów 1H, 20-708 Lublin, Poland
autor
- Department of Botany and Hydrobiology, The John Paul II Catholic University of Lublin, ul. Konstantynów 1H, 20-708 Lublin, Poland
autor
- Department of Botany and Hydrobiology, The John Paul II Catholic University of Lublin, ul. Konstantynów 1H, 20-708 Lublin, Poland
Bibliografia
- [1]. APHA 1995. Standard methods for the examination of water and wastewater. Washington, DC: American Public Health Association.
- [2]. Behrendt, H., Nixdorf, B. (1993). The carbon balance of phytoplankton production and loss processes based on in situ measurements in a shallow lake. Int. Rev. Hydrobiol. 78: 439-458.
- [3]. Briand, E., Gugger, M., Francois, J-Ch., Bernard, C., Humbert, J-F., Quiblier, C. (2008). Temporal variations in the dynamics of potentially microcystin-producing strains in a bloom-forming Planktothrix agardhii (Cyanobacterium) population. Appl. Environ. Microb. 74 (12): 3839-3848. D01:10.1128/AEM.02343-07
- [4]. Carmichael, W.W., (2001). Health Effects of Toxin- Producing Cyanobacteria: “The CyanoHABs”. Hum. Ecol. Risk Assess. 7 (5): 1393-1407. DOI:10.1080/20018091095087
- [5]. Carey, C.C., Ibelings, B.W., Hoffman, E.P., Hamilton, D.P., Brookes, J.D. (2012). Eco-physiological adaptations that favour freshwater cyanobacteria in a changing climate. Wat. Res. 46 (5): 1394-1407. DOI:10.1016/j.watres.2011.12.016
- [6]. Carvalho, L., Miller, C.A., Scott, E.M., Codd, G.A., Davies, P.S., Tyler, A.N. (2011). Cyanobacterial blooms: statistical models describing risk factors for national-scale lake assessment and lake management. Sci. Total Environ. 409: 5333-5358. DOI:10.1016/j.scitotenv.2011.09.030
- [7]. Chaffin, J. D., Bridgeman, T., B. (2014). Organic and inorganic nitrogen utilization by nitrogen-stressed cyanobacteria during bloom conditions. J. Appl. Phycol. 26, 299-309. DOI: 10.1007/s10811-013-0118-0
- [8]. Codd, G.A. (2000). Cyanobacterial toxins, the perception of water quality, and the prioritisation of eutrophication control. Ecol. Eng. 16: 51-60. DOI: 10.1016/S0925-8574(00)00089-6
- [9]. Dietrich, D., Hoeger, S. (2005). Guidance values for microcystins in water and cyanobacterial supplement pro ducts (blue-green algal supplements): a reasonable or misguided approach? Toxicol. Appl. Pharm. 203: 273-289. DOI:10.1016/j. taap.2004.09.005
- [10]. Dittman, E., Fewer, D.P., Neilan, B.A. (2013). Cyanobacterial toxins: biosynthetic routes and evolutionary roots. FEMS Microbiol. Rev. 37 (1): 23-43. DOI: 10.1111/j. 1574- 6976.2012.12000.x
- [11]. European Parliament Council 2000. Directive 2000/60/EC of the European Parliament and of the council of 23 October 2000 establishing a framework for community action in the field of water policy. Official Journal of the European Communities, L327, 1-72.
- [12]. Gągała, I., Mankiewicz-Boczek, J. (2012). The natural degradation of microcystins (cyanobacterial hepatotoxins) in fresh water - the future of modern treatment systems and water quality improvement. Pol. J. Environ. Stud. 21(5): 1125-1139.
- [13]. Grabowska, M., Pawlik-Skowrońska, B. (2008). Replacement of Chroococcales and Nostocales by Oscillatoriales caused a significant increase in microcystin concentrations in a dam reservoir. Oceanol. Hydrobiol. St. 37(4): 23-33. DOI: 10.2478/ v10009-008-0016-y,
- [14]. Grabowska, M., Mazur-Marzec, H. (2011). The effect of cyanobacterial blooms in the Siemianówka Dam Reservoir on the phytoplankton structure in the Narew River. Oceanol. Hydrobiol. St. 40 (1): 19-26. DOI: 10.2478/s13545-011- 0003-x
- [15]. Grabowska, M., Kobos, J., Toruńska-Sitarz, A., Mazur-Marzec H. (2014). Non-ribosomal peptides produced by Planktotrhix agardhii from Siemianówka Dam Reservoir SDR (northeast Poland). Arch. Microbiol. 196(10): 697-707. DOI: 10.1007/ s00203-014-1008-9
- [16]. Graham, J., L., Jones, J., R., Jones, S., B., Downing, J., A., Clevenger, T., E. (2004). Environmental factors influencing microcystin distribution and concentration in the Midwestern United States. Water Res. 38: 4395-4404. doi:10.1016/j.watres.2004.08.004
- [17]. Haldna, M., Milius, A., Laugaste, R., Kangur, K. (2008). Nutrients and phytoplankton in Lake Peipsi during two periods that differed in water level and temperature. Hydrobiologia 599: 3-11. DOI: 10.1007/s10750-007-9208-9
- [18]. Hillebrand, H., Dürselen, C. D., Kirschtel, D., Pollingher, U., Zohary T. (1999). Biovolume calculation for pelagic and benthic microalgae. J. Phycol. 35: 403-424.
- [19]. Jacoby, J. M., Collier, D. C., Welch, E. B., Hardy, F. J., Crayton, M. (2000). Environmental factors associated with a toxic bloom of Microcystis aeruginosa. Can. J. Fish. Aquat. Sci. 57: 231¬240. DOI: 10.1139/f99-234
- [20]. Kobos, J., Błaszczyk, A., Hohfeld, N., Toruńska-Sitarz, A., Krakowiak, A., Hebel, A., Sutryk, K., Grabowska, M., Toporowska, M., Kokociński, M., Messyasz, B., Rybak, A., Napiórkowska-Krzebietke, A., Nawrocka, L., Pełęchata, A., Budzyńska, A., Zagajewski, P., Mazur-Marzec, H. (2013). Cyanobacteria and cyanotoxins in Polish freshwater bodies. Oceanol. Hydrobiol. St. 42(4): 358-378. DOI: 10.2478/ s13545-013-0093-8
- [21]. Kokociński, M., Stefaniak, K., Mankiewicz-Boczek, J., Izydorczyk, K., Soininen, J. (2012). The ecology of the invasive cyanobacterium Cylindrospermopsis raciborskii (Nostocales, Cyanophyta) in two hypertrophic lakes dominated by Planktothrix agardhii (Oscillatoriales, Cyanophyta). Eur. J. Phycol. 45 (4): 365-374. DOI: 10.1080/09670262.2010.492916
- [22]. Kokociński, M., Mankiewicz-Boczek, J., Jurczak, T., Spoof, L., Meriluoto, J., Rejmonczyk, E., Hautala, H., Vehniainen, M., Pawełczyk, J., Soininen, J. (2013). Aphanizomenon gracile (Nostocales), a cylindrospermopsin-producing cyanobacterium in Polish lakes. Environ. Sci. Pollut. Res. Int. 20(8): 5243-5264. DOI: 10.1007/s11356-012-1426-7
- [23]. Lahrouni, M., Oufdou, K., Faghire, M., Peix, A., El Khalloufi, E., Vasconcelos, V, Oudra B. (2012). Cyanobacterial extracts containing microcystins affect the growth, nodulation process and nitrogen uptake of faba bean (Vicia faba L., Fabaceae). Ecotoxicology 21 (3): 681-687. DOI: 10.1007/ s10646-011-0826-7
- [24]. Lawton, L.A., Edwards, C., Codd, G.A. (1994). Extraction and high performance liquid chromatographic method for the determination of microcystins in raw and treated waters. Analyst 119: 1525-1530. DOI: 10.1039/AN9941901525
- [25]. Luukkainen, R., Sivonen, K., Namikoshi, M., Fardig, M., Rinehart, K.L., Niemela, S.I. (1993). Isolation and identification of eight microcystins from thirteen Oscillatoria agardhii strains and structure of a new microcystin. Appl. Environ. Microb. 59 (7): 2204-2209.
- [26]. LeBlanc Renaud, S., Pick, F.R., Fortin, N. (2011). Effect of light intensity on the relative dominance of toxigenic and nontoxigenic strains of Microcystis aeruginosa. Appl. Environ. Microb. 77 (19): 7016-7022. D0I:10.1128/AEM.05246-11
- [27]. Liu, Y.Q., Xie, P., Zhang, D.W., Wen, Z.R. (2008). Seasonal dynamics of microcystins with associated biotic and abiotic parameters in two bays of Lake Taihu, the third largest freshwater lake in China. B. Environ. Contam. Tox. 80: 24-29. DOI: 10.1007/s00128-007-9293-5
- [28]. Mankiewicz, J., Komarkova, J., Izydorczyk, K., Jurczak, T., Tarczyńska, M., Zalewski, M. (2005). Hepatotoxic cyanobacterial blooms in the lakes of Northern Poland. Environ. Toxicol. 20: 499-506. DOI: 10.1002/tox.20138
- [29]. Mbedi, S., Welker, M., Fastner, J., Wiedner, C. (2005). Variability of the microcystins synthetase gene cluster in the genus Planktothrix (Oscillatoriales, Cyanobacteria). FEMS Microbiol. Lett. 245: 299-306. D0I:10.1016/j. femsle.2005.03.020
- [30]. Merel, S., Walker, D., Chicana, R., Snyder, S., Baures, E., Thomas, O. (2013). State of knowledge and concerns on cyanobacterial blooms and cyanotoxins. Environ. Int. 59: 303-327. D0I:10.1016/j.envint.2013.06.013
- [31]. Meriluoto, J., Karlsson, K., Spoof, L. (2004). High-Throughput screening of ten microcystins and nodularins, cyanobacterial peptide hepatotoxins, by reversed-phase Liquid Chromatography-Electrospray Ionisation Mass Spectrometry. Chromatographia 59(5-6): 291-298. DOI: 10.1365/s10337-003-0163-y
- [32]. Meriluoto, J., Codd, G.A. (2005). Toxic cyanobacterial monitoring and cyanotoxins analysis. Finland: Abo Akademi Press. Nagid, E. J., Canfield, D. E., Hoyer, M. W. (2001). Wind-induced increases in trophic state characteristics of a large (27 km2), shallow (1.5 mean depth) Florida lake. Hydrobiologia 455: 97-110. DOI: 10.1023/A:1011913200302
- [33]. Naselli-Flores, L., Barone, R. (2005). Water-level fluctuations in Mediterranean reservoirs: setting a dewatering threshold as a management tool to improve water quality. Hydrobiologia 548: 85-99. DOI: 10.1007/s10750-005-1149-6
- [34]. Nixdorf, B., Mischke, U., Rücker, J. (2003). Phytoplankton assemblages and steady state in deep and shallow eutrophic lakes - an approach to differentiate the habitat properties of Oscillatoriales. Hydrobiologia 502: 111-121. DOI: 10.1007/978-94-017-2666-5_10
- [35]. Nöges, T., Nöges., P., Laugaste, R. (2003).Water level as the mediator between climate changes and phytoplankton composition in a large shallow temperate lake. Hydrobiologia 506-509: 257¬263. DOI: 10.1023/B:HYDR.0000008540.06592.48
- [36]. Olding, D.D., Hellebust, J.A., Douglas, M.S.V. (2000). Phytoplankton community composition in relation to water quality and waterbody morphometry in urban lakes, reservoirs and ponds. Can. J. Fish. Aquat. Sci. 57(10): 2163-2174. DOI: 10.1139/f00-176
- [37]. O’Neil, J.M., Davis, T.W., Burford, M.A., Gobler, C.J. (2012). The rise of harmful cyanobacteria blooms: The potential roles of eutrophication and climate change. Harmful Algae 14: 313¬334. DOI:10.1016/j.hal.2011.10.027
- [38]. Orr, P.T., Jones, G.J. (1998). Relationship between microcystin production and cell division rates in nitrogen-limited Microcystis aeruginosa cultures. Limnol. Oceanogr. 43: 1604¬1614.
- [39]. Padisak, J., Köhler, J., Hoeg, S. (1999). The effect of changing flushing rates on development of late summer Aphanizomenon and Microcystis populations in a shallow lake, Müggelsee, Berlin, Germany. In G. Tundisi & M. Straskraba (Eds.), Theoretical reservoir ecology and its applications (pp. 411-423), Backhuys.Paerl, W., Hall, N.S., Calandrino, E.S. (2011). Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic- induced change. Sci. Total Environ. 409: 1739-1745. DOI: 10.1016/j.scitotenv.2011.02.001
- [40]. Pawlik-Skowrońska, B., Pirszel, J., Kornijów, R. (2008). Spatial and temporal variation in microcystin concentrations during perennial bloom of Planktothrix agardhii in a hypertrophic lake. Ann. Limnol. - Int. J. Lim. 44 (2): 145-150. DOI: http:// dx.doi.org/10.1051/limn:2008015
- [41]. Pawlik-Skowrońska, B., Toporowska, M. (2011). Blooms of toxin-producing Cyanobacteria - a real threat in small dam reservoir at the beginning of their operation. Oceanol. Hydrobiol. St. 40(4): 30-37. DOI: 10.2478/s13545-011-0038-z
- [42]. Pawlik-Skowrońska, B., Kalinowska, R., Skowroński, T. (2013). Cyanotoxin diversity and food Web bio accumulation in a reservoir with decreasing phosphorus concentrations and perennial cyanobacterial blooms. Harmful Algae 28:118¬125. DOI:10.1016/j.hal.2013.06.002
- [43]. Pearl, H. W., Otten, T. G. (2013). Harmful cyanobacterial blooms: causes, consequences and controls. Microbial Ecol. 65(4): 995-1010. DOI: 10.1007/s00248-012-0159-y
- [44]. Peuthert, A, Chakrabarti, S., Pflugmacher S. (2007). Uptake of microcystins -LR and -LF (cyanobacterial toxins) in seedlings of several important agricultural plant species and the correlation with cellular damage (lipid peroxidation). Environ. Toxicol. 22: 436-442.
- [45]. PN-ISO 10260, (2002). Water quality. Measurement of biochemical parameters. Spectrophotometric determination of chlorophyll-a, PWN, Warszawa, pp. 11 (in Polish).
- [46]. Sivonen, K., Namikoshi, M., Evans, W.R., Carmichael, W.W., Sun, F., Rouhiainen, L., Luukkainen, R., Rinehart, K.L. (1992). Isolation and characterization of a variety of microcystins from seven strains of the cyanobacterial genus Anabaena. Appl. Environ. Microb. 58 (8): 2495-2500.
- [47]. Solis, M., Poniewozik, M., Mencfel, R. (2009). Bloom-forming cyanobacteria and other algae in selected anthropogenic reservoirs of the Łęczna-Włodawa Lakeland. Oceanol. Hydrobiol. St. 38(Suppl. 2): 71-78.
- [48]. Solis, M. (2012). Impact of Wieprz-Krzna Canal on physical- chemical and biological characteristics in selected storage reservoirs. Inż. Ekol. 29: 182-191 (in Polish).
- [49]. Tang, X., Wu, M., Yang, W., Yin, W., Jin, F., Ye, M., Currie, N., Scholz, M. (2012). Ecological strategy for eutrophication control. Wat. Air Soil Poll. 223(2): 723-737. DOI: 10.1007/s11270-011-0897-3
- [50]. Tonk, L., Visser, P.M., Christiansen, G., Dittmann, E., Snelder, E.O.F.M., Wiedner, C., Mur, L.R., Huisman, J. (2005). The microcystin composition of the cyanobacterium Planktothrix agardhii changes toward a more toxic variant with increasing light intensity. Appl. Environ. Microb. 71 (9): 5177-5181. DOI: 10.1128/AEM.71.9.5177-5181.2005
- [51]. Utermöhl, H. (1958). For Perfection of quantitative Phytoplanktonmethodik. Mitt. Int. Ver. Theor. Ang. Limnol. 9: 1-38 (in German).
- [52]. Vezie, C., Rapala, J., Vaitomaa, J., Seitsonen, J., K. Sivonen K. (2002). Effect of nitrogen and phosphorus on growth of toxic and nontoxic Microcystis strains and on intracellular microcystin concentrations. Microbial Ecol. 43 (4): 443-454. DOI: 10.1007/s00248-001-0041-9
- [53]. Wagner, C, Adrian, R. (2009). Cyanobacteria domiance: quantifying the effects of climate change. Limnol. Oceanogr. 54: 2460-2468.
- [54]. World Health Organization (WHO) (2003). Guidelines for safe recreational water environments Volume 1: Coastal and Fresh Waters. Chapter 8. Algae and Cyanobacteria in Fresh Water.
- [55]. Wiśniewska, M., Krupa, D., Pawlik-Skowrońska, B., Kornijów, R. (2007). Development of toxic Planktothrix agardhii (Gom.) Anagn. et Kom. and potentially toxic alga in the hypertrophic Lake Syczyńskie (Eastern Poland). Oceanol. Hydrobiol. St. 36(Suppl. 1): 173-179.
- [56]. Yepremian, C., Gugger, M.,F., Briand, E., Catherine, A., Berger, C., Quiblier, C., Bernard, C. (2007). Microcystin ecotypes in a perennial Planktothrix agardhii bloom. Water Res. 41: 4446-4456. DOI:10.1016/j.watres.2007.06.028
- [57]. Zohary, T, Ostrovsky, I. (2011). Ecological impacts of excessive water level fluctuations in stratified freshwater lakes. Inland Waters 1: 47-59.
- [58]. Zurawell, R.W., Chen, H., Burke, J.M., Prepas, E.E. (2005). Hepatotoxic cyanobacteria: a review of the biological importance of microcystins in freshwater environments. J. Toxicol. Env. Health 8: 1-37. DOI: 10.1080/10937400590889412
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-97efe9e4-210a-4eb4-9aa5-0c5fc553884e