Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The presence of natural organic matter (NOM) in water has a significant influence on water treatment processes. Water industries around the world consider coagulation/flocculation to be one of the main water treatment methods. The chief objective of conventional coagulation-based processes is to reduce the turbidity of the water and to remove natural organic matter (NOM) present in solutions. The aim of this paper is to present some developments in terms of improved coagulation for the drinking water of Sidi Yacoub treatment plant located in the Northwest of Algeria. The experiments involved studying the effects of the application of two coagulants (ferric chloride and aluminium sulphate) on the removal of turbidity and natural organic matter from water by measuring the chemical oxygen demand (COD) and the UV absorbance at 254 nm. The results showed that the rate of turbidity removal increased from 81.3% to 88% when ferric chloride was applied and from 89.91% to 94% when aluminium sulphate was applied. For NOM removal, the maximum removal rates of COD and UV254 were 48% and 52%, respectively, in the case of ferric chloride. These rates increased to 59% and 65% after optimised coagulation. When aluminium sulphate was used, the rate of removal in water increased from 43% to 55% for COD and from 47% to 59% for UV254 after optimised coagulation. The combination of the two coagulants at equal dosage shows a slight improvement in the values obtained after optimisation, both in terms of turbidity and the NOM.
Wydawca
Czasopismo
Rocznik
Tom
Strony
72--77
Opis fizyczny
Bibliogr. 28 poz., tab., wykr.
Twórcy
autor
- University of Science and Technology Mohamed Boudiaf of Oran, Faculty of Architecture and Civil Engineering, El Mnaouar, BP 1505, Bir El Djir 31000, Oran, Algeria
autor
- Hassiba Benbouali University of Chlef, Faculty of Civil Engineering and Architecture, Chlef, Algeria
Bibliografia
- ABU HASSAN M.A., TAN P., ZAINON NOOR Z. 2009. Coagulation and flocculation treatment of wastewater in textile industry using chitosan. Journal of Chemical and Natural Resources Engineering. Vol. 4(1) p. 43–53.
- ARTINGER R., BUCKAU G., GEYER S., FRITZ P., WOLF M., KIM J. 2000. Characterization of groundwater humic substances: Influence of sedimentary organic carbon. Applied Geochemistry. Vol. 15(1) p. 97–116. DOI 10.1016/S0883-2927(99)00021-9.
- BUDD G.C., HESS A. F., SHORNEY-DARBY H., NEEMANN J.J., SPENCER C.M., BELLAMY J.D., HARGETTE P.H. 2004. Coagulation applications for new treatment goals. American Water Works Association. Vol. 96(2) p. 102–113. DOI 10.1002/j.1551-8833.2004.tb10559.x.
- CROUE J. P., KORSHIN G., BENJAMIN M. 2000. Characterisation of natural organic matter in drinking water. American Water Works Association. U.S.A. ISBN 1-58321-015-6 pp. 324.
- CUI H., HUANG X., YU Z., CHEN P., CAO X. 2020. Application progress of enhanced coagulation in water treatment. RSC Advances. Royal Society of Chemistry. Vol. 10(34) p. 20231–20244. DOI 10.1039/ d0ra02979c.
- DITTMAR T., STUBBINS A. 2014. Dissolved organic matter in aquatic systems. In: Treatise on geochemistry. 2nd ed. Vol. 12. Eds. H.D. Holland, K.K. Turekian. Elsevier Science p. 125–156. DOI 10.1016/B978-0-08-095975-7.01010-X.
- EDZWALD J.K. 2011. Water quality & treatment. A handbook on drinking water. 6th ed. Mc Graw Hill. ISBN 978-0-07-163010-8 pp. 1696.
- FABRIS R., CHOW C.W.K., DRIKAS M., EIKEBROKK B. 2008. Comparison of NOM character in selected Australian and Norwegian drinking waters. Water Research. Vol. 42(15) p. 4188–4196. DOI 10.1016/ j.watres.2008.06.023.
- IMAI A., FUKUSHIMAT., MATSUSHIGE K., KIM Y.-H., CHOI K. 2002. Characterization of dissolved organic matter in effluents from wastewater treatment plants. Water Research. Vol. 36(4) p. 859– 870. DOI 10.1016/s0043-1354(01)00283-4.
- IRFAN M., BUTT T., IMTIAZ N., ABBAS N., KHAN R. A., SHAFIQUE A. 2017. The removal of COD, TSS and colour of black liquor by coagulation–flocculation process at optimized pH, settling and dosing rate. Arabian Journal of Chemistry. King Saud University. Vol. 10 p. S2307–S2318. DOI 10.1016/j.arabjc.2013.08.007.
- JACANGELO J.G., DEMARCO J., OWEN D.M., RANDTKE S.J. 1995. Selected processes for removing NOM: An overview. Journal American Water Works Association. Vol. 87(1) p. 64–77. DOI 10.1002/ j.1551-8833.1995.tb06302.x.
- JOSEPH L., FLORA J.R.V., PARK Y.-G., BADAWY M., SALEH H., YOON Y. 2012. Removal of natural organic matter from potential drinking water sources by combined coagulation and adsorption using carbon nanomaterials. Separation and purification technology. Vol. 95 p. 64–72. DOI 10.1016/j.seppur.2012.04.033.
- KANG K.-H., SHIN H.S., PARK H. 2002. Characterization of humic substances present in landfill leachates with different landfill ages and its implications. Water Research. Vol. 36(16) p. 4023–4032. DOI 10.1016/S0043-1354(02)00114-8.
- LEFEBVRE E. 1995. Etude par des parametres globaux de la matière organique d’eaux brutes et clarifiées [Study of organic matter from raw and clarified waters by general analytical parameters]. Revue des Sciences de l’Eau. Vol. 8(1) p. 125–150. DOI 10.7202/ 705216ar.
- LU C., CHU C. 2005. Effects of acetic acid on the regrowth of heterotrophic bacteria in the drinking water distribution system. World Journal of Microbiology and Biotechnology. Vol. 21(6–7) p. 989–998. DOI 10.1007/s11274-004-7554-6.
- MACCARTHY P. 2001. The principles of humic substances. Soil Science. Vol. 166(11) p. 738–751. DOI 10.1097/00010694-200111000- 00003.
- MATILAINEN A., VEPSÄLÄINEN M., SILLANPÄÄ M. 2010. Natural organic matter removal by coagulation during drinking water treatment: A review. Advances in Colloid and Interface Science. Vol. 159(2) p. 189–197. DOI 10.1016/j.cis.2010.06.007.
- QAISER S., HASHMI I., NASIR H. 2014. Chlorination at treatment plant and drinking water quality: A case study of different sectors of Islamabad, Pakistan. Arabian Journal for Science and Engineering. Vol. 39(7) p. 5665–5675. DOI 10.1007/s13369-014-1097-4.
- RODIER J. 2009. L’analyse de l’eau [Water analysis]. 9e éditon. Paris. Dunod. ISBN 978-2-10-054179-9 pp. 1600.
- SHARP E.L., PARSONS S.A., JEFFERSON B. 2006. Seasonal variations in natural organic matter and its impact on coagulation in water treatment. Science of The Total Environment. Vol. 363(1–3) p. 183–194. DOI 10.1016/j.scitotenv.2005.05.032.
- SILLANPÄÄ M., NCIBI M. C., MATILAINEN A., VEPSÄLÄINEN M. 2018. Removal of natural organic matter in drinking water treatment by coagulation: A comprehensive review. Chemosphere. Vol. 190 p. 54–71. DOI 10.1016/j.chemosphere.2017.09.113.
- SOROS A., AMBURGEY J.E., STAUBER C.E., SOBSEY M.D., CASANOVA L.M. 2019. Turbidity reduction in drinking water by coagulation-flocculation with chitosan polymers. Journal of Water and Health. Vol. 17(2) p. 204–218. DOI 10.2166/wh.2019.114.
- SPARKS D.L. 2003. Environmental soil chemistry. 2nd ed. USA. Esevier Science. ISBN 0-12-656446-9 pp. 367.
- TIPPING E. 2002. Cation binding by humic substances. London. Cambridge University Press. ISBN 0-521-62146-1 pp. 446.
- VOLK C., BELL K., IBRAHIM E., VERGES D., AMY G., LECHEVALLIER M. 2000. Impact of enhanced and optimized coagulation on removal of organic matter and its biodegradable fraction in drinking water. Water Research. Vol. 34(12) p. 3247–3257. DOI 10.1016/S0043- 1354(00)00033-6.
- YAMADA T., ROSADI M.Y., HUDORI SUZUKI Y., ITO E., LI F. 2019. Characteristics of dissolved organic matter in a water purification plant and distribution pipes. MATEC Web of Conferences. Vol. 280, 03007. DOI 10.1051/matecconf/201928003007.
- YAN M., WANG D., QU J., NI J., CHOW C.W.K. 2008. Enhanced coagulation for high alkalinity and micro-polluted water: The third way through coagulant optimization. Water Research. Vol. 42(8–9) p. 2278–2286. DOI 10.1016/j.watres.2007.12.006.
- YU J., WANG D., YAN M., YE C., YANG M., GE X. 2007. Optimized coagulation of high alkalinity, low temperature and particle water: pH adjustment and polyelectrolytes as coagulant aids. Environmental Monitoring and Assessment. Vol. 131(1–3) p. 377–386. DOI 10.1007/s10661-006-9483-3.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-97e7d4e5-4c90-479c-8cfb-b9ea7eaac402