Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Quantification of the eye’s anterior segment morphology from optical coherence tomography (OCT) images is crucial for research and clinical decision-making, including the diagnosis and monitoring of many ocular diseases. Structural parameters, such as tissue thickness and area are the most common metrics used to quantify these medical images, and tissue segmentation is required before these metrics can be extracted. Currently, swept source OCTallows the capture of cross-sectional images that encompass the entire anterior segment with a high level of detail. However, the manual annotation of tissue boundaries is time-consuming. In this work, an algorithm based on graph-search theory combined with boundary-specific image transformation is applied for the segmentation of anterior segment OCT images. We demonstrate that the method can reliably segment 5 different tissue boundaries in healthy eyes with low boundary error (mean error below 1 pixel across all boundaries). The technique can be used to extract clinically relevant parameters such as central corneal and crystalline lens thickness as well as anterior chamber depth and area, with a high level of agreement with manual segmentation (normalized errors below 1.6%). The proposed method provides a tool that can support clinical and research OCT data analysis.
Wydawca
Czasopismo
Rocznik
Tom
Strony
903--915
Opis fizyczny
Bibliogr. 51 poz., rys., tab., wykr.
Twórcy
autor
- Queensland University of Technology (QUT), Centre for Vision and Eye Research, School of Optometry and Vision Science, Contact Lens and Visual Optics Laboratory, Queensland, Australia
autor
- Wrocław University of Science and Technology, Department of Optics and Photonics, Visual Optics Group, Wrocław, Poland
autor
- Wrocław University of Science and Technology, Department of Optics and Photonics, Visual Optics Group, Wrocław, Poland
autor
- Queensland University of Technology (QUT), Centre for Vision and Eye Research, School of Optometry and Vision Science, Contact Lens and Visual Optics Laboratory, Queensland, Australia
autor
- Queensland University of Technology (QUT), Centre for Vision and Eye Research, School of Optometry and Vision Science, Contact Lens and Visual Optics Laboratory, Queensland, Australia
autor
- Queensland University of Technology (QUT), Centre for Vision and Eye Research, School of Optometry and Vision Science, Contact Lens and Visual Optics Laboratory, Queensland, Australia
Bibliografia
- [1] Gora M, Karnowski K, Szkulmowski M, Kaluzny BJ, Huber R, Kowalczyk A, et al. Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range. Opt Express 2009. https://doi. org/10.1364/oe.17.014880.
- [2] Yasuno Y, Madjarova VD, Makita S, Akiba M, Morosawa A, Chong C, et al. Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments. Opt Express 2005. https://doi.org/10.1364/opex.13.010652.
- [3] Muscat S, McKay N, Parks S, Kemp E, Keating D. Repeatability and reproducibility of corneal thickness measurements by optical coherence tomography. Investig Ophthalmol Vis Sci 2002.
- [4] Karnowski K, Kaluzny BJ, Szkulmowski M, Gora M, Wojtkowski M. Corneal topography with high-speed swept source OCT in clinical examination. Biomed Opt Express 2011. https://doi.org/10.1364/boe.2.002709.
- [5] Fisher D, Collins MJ, Vincent SJ. Anterior segment optical coherence tomography scanning protocols and corneal thickness repeatability. Contact Lens Anterior Eye 2019. https://doi.org/10.1016/j.clae.2019.12.008.
- [6] de Castro A, Ortiz S, Gambra E, Siedlecki D, Marcos S. Three-dimensional reconstruction of the crystalline lens gradient index distribution from OCT imaging. Opt Express 2010. https://doi.org/10.1364/oe.18.021905.
- [7] Ni SN, Tian J, Marziliano P, Wong HT. Anterior Chamber Angle Shape Analysis and Classification of Glaucoma in SS-OCT Images. J Ophthalmol 2014;2014. https://doi.org/10.1155/2014/942367.
- [8] Fu H, Xu Y, Wong DWK, Liu J, Baskaran M, Perera SA, et al. Automatic anterior chamber angle structure segmentation in AS-OCT image based on label transfer, in. Proc Annu Int Conf IEEE Eng Med Biol Soc EMBS 2016. https://doi.org/10.1109/EMBC.2016.7590942.
- [9] Read SA, Alonso-Caneiro D, Vincent SJ, Bremner A, Fothergill A, Ismail B, et al. Anterior eye tissue morphology: Scleral and conjunctival thickness in children and young adults. Sci Rep 2016;6:1–10. https://doi.org/10.1038/srep33796.
- [10] Read SA, Alonso-Caneiro D, Free KA, Labuc-Spoors E, Leigh JK, Quirk CJ, et al. Diurnal variation of anterior scleral and conjunctival thickness. Ophthalmic Physiol Opt 2016. https://doi.org/10.1111/opo.12288.
- [11] Alonso-Caneiro D, Vincent SJ, Collins MJ. Morphological changes in the conjunctiva, episclera and sclera following short-term miniscleral contact lens wear in rigid lens neophytes. Contact Lens Anterior Eye 2016. https://doi.org/10.1016/j.clae.2015.06.008.
- [12] Vincent SJ, Alonso-Caneiro D, Kricancic H, Collins MJ. Scleral contact lens thickness profiles: The relationship between average and centre lens thickness. Contact Lens Anterior Eye 2019;42:55–62. https://doi.org/10.1016/j.clae.2018.03.002.
- [13] Alonso-Caneiro D, Shaw AJ, Collins MJ. Using optical coherence tomography to assess corneoscleral morphology after soft contact lens wear. Optom Vis Sci 2012. https://doi.org/10.1097/OPX.0b013e31826c5f63.
- [14] Li P, An L, Reif R, Shen TT, Johnstone M, Wang RK. In vivo microstructural and microvascular imaging of the human corneo-scleral limbus using optical coherence tomography. Biomed Opt Express 2011. https://doi.org/10.1364/boe.2.003109.
- [15] Li P, Shen TT, Johnstone M, Wang RK. Pulsatile motion of the trabecular meshwork in healthy human subjects quantified by phase-sensitive optical coherence tomography. Biomed Opt Express 2013. https://doi.org/10.1364/boe.4.002051.
- [16] Koprowski R, Siedlecki D, Kasprzaz H, Wróbel Z. Rapid dynamic changes of the geometry of the anterior segment of the eye: A method of automatic spatial correction of a temporal sequence of OCT images. Comput Biol Med 2016. https://doi.org/10.1016/j.compbiomed.2016.03.013.
- [17] Schlatter B, Beck M, Frueh BE, Tappeiner C, Zinkernagel M. Evaluation of scleral and corneal thickness in keratoconus patients. J Cataract Refract Surg 2015. https://doi.org/10.1016/j.jcrs.2014.08.035.
- [18] Chansangpetch S, Rojanapongpun P, Lin SC. Anterior Segment Imaging for Angle Closure. Am J Ophthalmol 2018. https://doi.org/10.1016/j.ajo.2018.01.006.
- [19] Fujimoto J, Swanson E. The development, commercialization, and impact of optical coherence tomography. Investig Ophthalmol Vis Sci 2016;57:OCT1–OCT13. https://doi.org/10.1167/iovs.16-19963.
- [20] Lavinsky F, Lavinsky D. Novel perspectives on swept-source optical coherence tomography. Int J Retin Vitr 2016;2:1–11. https://doi.org/10.1186/s40942-016-0050-y.
- [21] Barteselli G, Bartsch DU, Weinreb RN, Camacho N, Nezgoda JT, Marvasti AH, et al. Real-time full-depth visualization of posterior ocular structures. Retina 2016;36:1153–61. https://doi.org/10.1097/IAE.0000000000000842.
- [22] LaRocca F, Chiu SJ, McNabb RP, Kuo AN, Izatt JA, Farsiu S. Robust automatic segmentation of corneal layer boundaries in SDOCT images using graph theory and dynamic programming. Biomed Opt Express 2011. https://doi.org/10.1364/boe.2.001524.
- [23] Elsawy A, Abdel-Mottaleb M, Abou Shousha M. Segmentation of corneal optical coherence tomography images using Graph Search and Radon transform. in 2019. https://doi.org/10.1117/12.2513114.
- [24] Rabbani H, Kafieh R, Kazemian Jahromi M, Jorjandi S, Mehri Dehnavi A, Hajizadeh F, et al. Obtaining thickness maps of corneal layers using the optimal algorithm for intracorneal layer segmentation. Int J Biomed Imaging 2016;2016. https://doi.org/10.1155/2016/1420230.
- [25] Venkateswaran N, Galor A, Wang J, Karp CL. Optical coherence tomography for ocular surface and corneal diseases: a review. Eye Vis 2018. https://doi.org/10.1186/s40662-018-0107-0.
- [26] Kuo AN, McNabb RP, Zhao M, LaRocca F, Stinnett SS, Farsiu S, et al. Corneal biometry from volumetric SDOCT and comparison with existing clinical modalities. Biomed Opt Express 2012. https://doi.org/10.1364/boe.3.001279.
- [27] T. Jing, P. Marziliano, H.T. Wong, Automatic detection of Schwalbe’s line in the anterior chamber angle of the eye using HD-OCT images, in: 2010 Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBC’10, 2010. https://doi.org/10.1109/IEMBS.2010.5626167.
- [28] Chiu SJ, Li XT, Nicholas P, Toth CA, Izatt JA, Farsiu S. Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation. Opt Express 2010. https://doi.org/10.1364/oe.18.019413.
- [29] A. Baghaie, Z. Yu, R.M. D’Souza, State-of-the-art in retinal optical coherence tomography image analysis (2015). https://doi.org/10.3978/j.issn.2223-4292.2015.07.02.
- [30] Alonso-Caneiro D, Read SA, Collins MJ. Automatic segmentation of choroidal thickness in optical coherence tomography. Biomed Opt Express 2013. https://doi.org/10.1364/boe.4.002795.
- [31] Kugelman J, Alonso-Caneiro D, Read SA, Hamwood J, Vincent SJ, Chen FK, et al. Automatic choroidal segmentation in OCT images using supervised deep learning methods. Sci Rep 2019. https://doi.org/10.1038/s41598-019-49816-4.
- [32] Tian J, Marziliano P, Baskaran M, Wong HT, Aung T. Automatic anterior chamber angle assessment for HD-OCT images. IEEE Trans Biomed Eng 2011;58:3242–9. https://doi.org/10.1109/TBME.2011.2166397.
- [33] Fu H, Xu Y, Lin S, Wong DWK, Baskaran M, Mahesh M, et al. Angle-Closure Detection in Anterior Segment OCT Based on Multilevel Deep Network. IEEE Trans Cybern 2019:1–9. https://doi.org/10.1109/tcyb.2019.2897162.
- [34] Niwas SI, Lin W, Bai X, Kwoh CK, Jay Kuo CC, Sng CC, et al. Automated anterior segment OCT image analysis for Angle Closure Glaucoma mechanisms classification. Comput Methods Programs Biomed 2016;130:65–75. https://doi.org/10.1016/j.cmpb.2016.03.018.
- [35] Koprowski R, Nowińska A, Wylegała E, Wróbel Z. A new algorithm and problems in automatic anterior eye chamber volume determining. Comput Biol Med 2014. https://doi.org/10.1016/j.compbiomed.2014.06.018.
- [36] Y. Li, R. Shekhar, D. Huang, Segmentation of 830- and 1310-nm LASIK corneal optical coherence tomography images, in: Med. Imaging 2002 Image Process. https://doi.org/10.1117/12.467123.
- [37] Graglia F, Mari J-L, Sequeir J. Cornea Contour Extraction from OCT Radial Images. Adv Knowl Appl Pract 2010. https://doi.org/10.5772/10365.
- [38] J.A. Eichel, A.K. Mishra, D.A. Clausi, P.W. Fieguth, K.K. Bizheva, A novel algorithm for extraction of the layers of the cornea, in: Proc. 2009 Can. Conf. Comput. Robot Vision, CRV 2009, 2009. https://doi.org/10.1109/CRV.2009.22.
- [39] Ortiz S, Siedlecki D, Pérez-Merino P, Chia N, de Castro A, Szkulmowski M, et al. Corneal topography from spectral optical coherence tomography (sOCT). Biomed Opt Express 2011. https://doi.org/10.1364/boe.2.003232.
- [40] Jahromi MK, Kafieh R, Rabbani H, Dehnavi AM, Peyman A, Hajizadeh F, et al. An Automatic algorithm for segmentation of the boundaries of corneal layers in optical coherence tomography images using gaussian mixture model. J Med Signals Sens 2014. https://doi.org/10.4103/2228-7477.137763.
- [41] Shen M, Xu Z, Yang C, Leng L, Liu J, Chen Q, et al. Agreement of corneal epithelial profiles produced by automated segmentation of SD-OCT images having different optical resolutions. Eye Contact Lens 2014. https://doi.org/10.1097/ICL.0000000000000017.
- [42] dos Santos VA, Schmetterer L, Stegmann H, Pfister M, Messner A, Schmidinger G, et al. CorneaNet: fast segmentation of cornea OCT scans of healthy and keratoconic eyes using deep learning. Biomed Opt Express 2019;10:622. https://doi.org/10.1364/boe.10.000622.
- [43] Mathai TS, Lathrop KL, Galeotti J. Learning to segment corneal tissue interfaces in oct images. Proc - Int Symp Biomed Imaging 2019. https://doi.org/10.1109/ISBI.2019.8759252.
- [44] Fang L, Cunefare D, Wang C, Guymer RH, Li S, Farsiu S. Automatic segmentation of nine retinal layer boundaries in OCT images of non-exudative AMD patients using deep learning and graph search. Biomed Opt Express 2017. https://doi.org/10.1364/boe.8.002732.
- [45] Ortiz S, Siedlecki D, Grulkowski I, Remon L, Pascual D, Wojtkowski M, et al. Optical distortion correction in Optical Coherence Tomography for quantitative ocular anterior segment by three-dimensional imaging. Opt Express 2010. https://doi.org/10.1364/oe.18.002782.
- [46] Alonso-Caneiro D, Read SA, Vincent SJ, Collins MJ, Wojtkowski M. Tissue thickness calculation in ocular optical coherence tomography. Biomed Opt Express 2016. https://doi.org/10.1364/boe.7.000629.
- [47] Hamwood J, Alonso-Caneiro D, Read SA, Vincent SJ, Collins MJ. Effect of patch size and network architecture on a convolutional neural network approach for automatic segmentation of OCTretinal layers. Biomed Opt Express 2018. https://doi.org/10.1364/boe.9.003049.
- [48] Nongpiur ME, Haaland BA, Friedman DS, Perera SA, He M, Foo LL, et al. Classification algorithms based on anterior segment optical coherence tomography measurements for detection of angle closure. Ophthalmology 2013;120:48–54. https://doi.org/10.1016/j.ophtha.2012.07.005.
- [49] Neri A, Ruggeri M, Protti A, Leaci R, Gandolfi SA, Macaluso C. Dynamic imaging of accommodation by swept-source anterior segment optical coherence tomography. J Cataract Refract Surg 2015. https://doi.org/10.1016/j.jcrs.2014.09.034.
- [50] Esteve-Taboada JJ, Domínguez-Vicent A, Monsálvez-Romín D, Del Águila-Carrasco AJ, Montés-Micó R. Non-invasive measurements of the dynamic changes in the ciliary muscle, crystalline lens morphology, and anterior chamber during accommodation with a high-resolution OCT. Graefe’s Arch Clin Exp Ophthalmol 2017. https://doi.org/10.1007/s00417-017-3663-4.
- [51] J. Kugelman, D. Alonso-Caneiro, S.A. Read, S.J. Vincent, F.K. Chen, M.J. Collins, Constructing Synthetic Chorio-Retinal Patches using Generative Adversarial Networks, in: 2019 Digit. Image Comput. Tech. Appl. DICTA 2019, https://doi.org/10.1109/DICTA47822.2019.8946089.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-97da9c36-1a8a-4d5e-89f2-34da6cc526ff