PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Finite element analysis of bipolar plate stamping based on a Yld2000 yield model

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Finite element analysis is an essential means for bipolar plate design and the optimization of the manufacturing process. However, the accuracy of the finite element simulation is significantly affected by the constitutive model, especially the yield model. In this paper, uniaxial and biaxial tensile tests were conducted to obtain the yield loci of an ultra-thin austenite stainless steel. The Yld2000 yield model was calibrated using the yield loci under different equivalent plastic strains. The microchannel stamping experiment and its finite element simulations were conducted to study the effect of yield model parameters on the finite element simulation of bipolar plate stamping. The results show that the simulation with Yld2000 calibrated by 0.004 and 0.05 equivalent plastic strain has the best prediction accuracy for the microchannel springback and thickness distribution, respectively.
Wydawca
Rocznik
Strony
7--12
Opis fizyczny
Bibliogr. 13 poz., rys.
Twórcy
autor
  • School of Mechanical Engineering, Tongji University, Shanghai 201804, China
autor
  • School of Mechanical Engineering, Tongji University, Shanghai 201804, China
autor
  • School of Mechanical Engineering, Tongji University, Shanghai 201804, China
autor
  • School of Mechanical Engineering, Tongji University, Shanghai 201804, China
Bibliografia
  • Banabic, D., Aretz, H., Comsa, D.S., & Paraianu, L. (2005). An improved analytical description of orthotropy in metallic sheets. International Journal of Plasticity, 21(3), 493–512. https://doi.org/10.1016/j.ijplas.2004.04.003.
  • Banabic, D., Barlat, F., Cazacu, O., & Kuwabara, T. (2020). Advances in anisotropy of plastic behaviour and formability of sheet metals. International Journal of Material Forming, 13(5), 749–787. https://doi.org/10.1007/s12289-020-01580-x.
  • Barlat, F., & Lian, K. (1989). Plastic behavior and stretchability of sheet metals. Part I: A yield function for orthotropic sheets under plane stress conditions. International Journal of Plasticity, 5(1), 51–66. https://doi.org/10.1016/0749-6419(89)90019-3.
  • Barlat, F., Brem, J.C., Yoon, J.W., Chung, K., Dick, R.E., Lege, D.J., Pourboghrat, F., Choi, S.-H., & Chu, E. (2003). Plane stress yield function for aluminum alloy sheets – part 1: theory. International Journal of Plasticity, 19(9), 1297–1319.
  • https://doi.org/10.1016/S0749-6419(02)00019-0.
  • Deng, Z., & Hennig, R. (2017). Influence of material modeling on simulation accuracy of aluminum stampings. Journal of Physics: Conference Series. 896(1), 012025. https://doi.org/10.1088/1742-6596/896/1/012025.
  • Hill, R. (1948). A theory of the yielding and plastic flow of anisotropic metals. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 193(1033), 281–297. https://doi.org/10.1098/rspa.1948.0045.
  • Hou, Y., Min, J., Lin, J., Liu, Z., Carsley, J.E., & Stoughton, T.B. (2017). Springback prediction of sheet metals using improved material models. Procedia Engineering, 207, 173–178. https://doi.org/10.1016/j.proeng.2017.10.757.
  • Hua, R., Zhang, W., & Cheng, L. (2022). Review on Design and Forming Technology of Metallic Bipolar Plates for Fuel Cells. Journal of Netshape Forming Engineering, 14(3), 25–33. https://doi.org/10.3969/j.issn.1674-6457.2022.03.004.
  • ISO 16842:2014. Metallic materials – Sheet and strip – Biaxial tensile testing method using a cruciform test piece.
  • ISO 6892-1:2016. Metallic materials – Tensile testing. Part 1: Method of test at room temperature.
  • Pham, Q.T., Lee, M.G., & Kim, Y.S. (2019). Characterization of the isotropic-distortional hardening model and its application to commercially pure titanium sheets. International Journal of Mechanical Sciences, 160, 90–102. https://doi.org/10.1016/j.ijmecsci.2019.06.023.
  • Sim, Y., Kwak, J., Kim, S.Y., Jo, Y., Kim, S., Kim, S.Y., Kim, J.H., Lee Ch.S., Jo, J.H., & Kwon, S.Y. (2018). Formation of 3D graphene – Ni foam heterostructures with enhanced performance and durability for bipolar plates in a polymer electrolyte membrane fuel cell. Journal of Materials Chemistry A, 6(4), 1504–1512. https://doi.org/10.1039/C7TA07598G.
  • Wang, L., Tao, Y., Zhang, Z., Wang, Y., Feng, Q., Wang, H., & Li, H. (2019). Molybdenum carbide coated 316L stainless steel for bipolar plates of proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 44(10),
  • 4940–4950. https://doi.org/10.1016/j.ijhydene.2018.12.184.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-97d6bb1e-c94b-40d5-8648-0794ca50e768
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.