PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mandrel-Free Bending of Tubes with Small Radii – A Theoretical and Experimental Study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the theoretical and experimental results of a study investigating a new method for tube bending. The method involves three-point bending of a tube without using a mandrel. The bending process was conducted with a small bending radius of Rg = 1.5Dz (where Dz is the outside diameter of the bent tube) and a large bending angle of 1800. The novelty of the proposed solution is the use of new shapes of bending roll impression. Instead of the standard circular-shaped impression, an elliptical-shaped impression was used. The aim of the study on the proposed small radius tube bending technique was to optimize the shape of roll impression in terms of minimizing ovalization and flattening of the tube cross section in the bending zone. Previous studies only showed that circular impressions were inefficient. The tube bending process conducted with a circular impression roll, without the use of a mandrel or other type of filling to achieve an angle ranging 900 ÷ 1800 , led to the flattening of the cross section. The tube wall in the upper zone would crack or its cross section would become deformed and oval. This theoretical and experimental study was conducted on tubes with an outside diameter of Dz=20 mm and a wall thickness of g=2 mm, made of 16Mo3 boiler steel and EN-AW 6060 aluminum alloy. Obtained results were then used to determine the ranges of bending roll impression parameters that ensured that the product would meet the standardized conditions of cross-sectional ovalization in the bending zone. The tool developed for this study can be applied in industrial practice.
Twórcy
  • Department of Production Engineering and Materials Technology, Częstochowa University of Technology, A. Krajowej 19, 42-201 Częstochowa, Poland
  • Faculty of Mechanical Engineering, Lublin University of Technology, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
  • Department of Production Engineering and Materials Technology, Częstochowa University of Technology, A. Krajowej 19, 42-201 Częstochowa, Poland
  • Faculty of Mechanical Engineering, Lublin University of Technology, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
Bibliografia
  • 1. Misiūnaitė I., Rimkus A., Jakuboskis R., Sokołow A.,Gribniak W. Analysis of local deformation effects in cold-formed tubular profiles subjected to bending. Journal of Constructional Steel Research. 2019; 160: 598–612.
  • 2. Asnafi N., Nilsson T., Lassl G. Automotive Tube Bending and Tubular Hydroforming with Extruded Aluminium Profiles. Journal Of Materials & Manufacturing. 2000; 109: 919–933.
  • 3. Vatter P.H., Plettke R. Process Model for the Design of Bent 3-Dimensional Free-Form Geometries for the Three-Roll-Push-Bending Process. Procedia CIRP. 2013; 7: 240–245.
  • 4. Ghiotti A., Simonetto E., Bruschi S., Bariani P. F.Springback measurement in three roll push bending process of hollow structural sections.CIRP Annals - Manufacturing Technology. 2017; 66(1): 289–292.
  • 5. Chung Y.J., Barlat F., Lee M. Bending Formability of Ferritic Stainless Steels for Application to Tubular Exhaust. Manifolds International. 2015; 55(1): 1048–1057.
  • 6. Hermes M., Staupendahl D., Becker Ch., Erman Tekkaya A. Innovative Machine Concepts for 3D Bending of Tubes and Profiles. Key Engineering Materials. 2011; 473: 37–42.
  • 7. Zhan M., Wang Y., Yang H., Long H. An Analytic Model for Tube Bending Springback Considering Different Parameter Variations of Ti-Alloy Tubes. Journal of Materials Processing Technology. 2016; 236: 123–137.
  • 8. Li H., Yang H., Song F., Zhan M. Springback Characterization and Behaviors of High-Strength Ti–3Al–2.5 V Tube in Cold Rotary Draw Bending. Journal of Material Processing Technology. 2012; 9: 1973–1987.
  • 9. Al-Qureshi H.A. Elastic-Plastic Analysis of Tube Bending. International Journal of Machine Tools and Manufacture. 1999; 39(1): 87–104
  • 10. Xunzhong G., Hao X., Yong X., Yannan M., Ali A.E., Jie T., Kai J. Free-bending process character- istics and forming process design of copper tubular components. The International Journal of Advanced Manufacturing Technology. 2018; 96: 3585–3601.
  • 11. Simonetto E., Ghiotti A., Bruschi S. Feasibility of Motion-Capture Techniques Applied to Tube Bending. Key Engineering Materials. 2015; 651–653: 1128–1133.
  • 12. Engel B., Kersten S. Analytical Models to Improve the Three-Roll-Push Bending Process of TubeProfiles. Steel Research International Special Edition10th ICTP 2011; 355–360.
  • 13. Taheri E., Firouzianhaji A., Mehrabi P., Vosough B., Samali H. B. Experimental and Numerical Investi- gation of a Method for Strengthening Cold-Formed Steel Profiles in Bending. Appl. Sci. 2020; 10: 3855
  • 14. Hermes M., Staupendahl D., Becker C., Tekkaya A.E., Staupendahl D. Innovative machine concepts for 3D bending of profiles andtubes. Key Eng Mater. 2011; 473: 37–42.
  • 15. Gantner P., Harrison D.K., De Silva A.K., Bauer H. The development of a simulation model and the determination of the die control data for the free-bending technique. Proc Inst Mech Eng B J Eng Manuf. 2007; 221: 163–171.
  • 16. Heng L., Shi K.P., Yang H., Tian Y.L. Springback law of thinwalled 6061-t4 al-alloy tube upon bending. Trans Nonferrous Metals Soc China. 2012; 22(2): 357–363.
  • 17. Djamaluddin F., Abdullah S., Ariffin A.K., Nopiah Z.M. Non-linear finite element analysis of bitubal circular tubes for progressive and bending collapses. International Journal of Mechanical Sciences. 2015: 99: 228-236.
  • 18. Yang H., Heng L., Zhiyong Z., Mei Z., Jing L., Guangjun L. Advances and Trends on Tube Bending Forming Technologies. Chinese Journal of Aeronautics. 2012; 25: 1–12.
  • 19. Michalczyk J. Wojsyk. K., Development and Modelling of the Method of Mandrelless Small-Radius Tube Bending. Archives of Metallurgy and Materials. 2015; 60: 2791-2797.
  • 20. https://emetal.eu/aluminium/aluminium-EN-AW- 6060-ISO_-AlMgSi-EN_-AW-AlMgSi-PN_-PA- 38-DIN_-AlMgSi0,5-wnr_-3.3206/
  • 21. http://www.mistal.pl/2013-03-26-17-30-34/rury- do-zastosowan-cisnieniowych-w-podwyzszonych- temperaturach-rury-kotlowe-pn-en10216- 2-din-17175
  • 22. Wojsyk K., Wrona T. A method for pinless tube bending. Advances in Metal Forming. Association of Mechanical Engineers and Technicians. (Metoda beztrzpieniowego gięcia rur. Postęp w obróbce Plastycznej Metali. Stowarzyszenie Inżynierów i Techników Mechaników). Częstochowa 1986; 37–42.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-97d5fc5d-6832-45af-b4cc-fa697c863c52
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.