PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Structural, optical and dielectric studies of lithium sulphate monohydrate single crystals

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Optical, dielectric, and thermal properties of lithium sulphate monohydrate crystals grown by slow evaporation method have been studied. The crystal structure was resolved by direct methods using single crystal X-ray diffraction data collected at room temperature and refined by full-matrix least-squares procedures to a final R-value of 0.0174. Plasma energy, Penn gap, Fermi energy and electronic polarizability of the grown crystal were calculated from single crystal XRD data. The electronic polarizability of lithium sulfate monohydrate was also calculated and compared with the theoretical data using Clausius-Mossotti equation. Optical band gap calculated from optical data for the grown crystal is 4.49 eV. Fourier Transform Infrared Spectroscopy study confirmed the presence of water in the crystal structure. The AC conductivity, dielectric constant and dielectric loss of the grown crystal were systemically investigated, showing a peak at about 130 °C which could be attributed to the water molecules in the crystal structure. The anomalous dielectric properties shown by the crystal have been correlated with its thermal behavior. The title crystal obeys Jonscher’s power law relation; σ(ω) = σο+ Aωs, with temperature dependent exponent s < 1. The activation energy calculated for the material is 0.24 eV and suggests protonic conduction by hopping mechanism in addition to cationic conduction by lithium ions. The micro-indentation study was also carried out which revealed that the crystal belongs to a category of soft materials.
Wydawca
Rocznik
Strony
18--31
Opis fizyczny
Bibliogr. 64 poz., rys., tab.
Twórcy
autor
  • Department of Physics, University of Kashmir, Srinagar 190006, India
autor
  • Department of Physics, University of Kashmir, Srinagar 190006, India
autor
  • SolidState Research Laboratory, Department of Physics, University of Kashmir, Srinagar 190006, India
Bibliografia
  • [1] BOSSHARD C., SUTTER K., SCHLESSER R., GUNTER P., J. Opt. Soc. Am. B, 10 (1993), 869.
  • [2] XU D., JIANG M., TAN Z., Acta Chim. Sinica, 41 (1983), 570.
  • [3] CALARK R.S., Photonic Spectra, 22 (1988), 135
  • [4] PRASAD P.N., WILLIAMS D.J., Introduction to Nonlinear Optical Effects in Molecules and Polymers, Wiley, New York, 1991.
  • [5] ROBERT R., RAJ C.J., KRISHNAN S., UTHRAKUMAR R., DINAKARAN S., DAS S.J., Physica B, 405 (2010), 3248.
  • [6] UTHRAKUMAR R., VESTA C., RAJ C.J., S. DINAKARAN, R. CHRISTHUDHAS R., DAS S.J., Cryst. Res. Technol., 43 (2008), 28.
  • [7] ZEILER G.E., Z. Kristallogr., 89 (1934), 456.
  • [8] LARSON A.C., HELMHOTZ L., J. Chem. Phys., 22 (1954), 2049.
  • [9] OZEROV R.P., FYKIN L.E., N.V. RANNEV N.V., ZHDANOV G.S., Doklady Akademii Nauk SSSR, 148 (1963), 1069.
  • [10] BECKER P., AHRWEILER S., HELD P., SCHNEEBERGER H., BOHATY L., Cryst. Res. Technol., 38 (2003), 881.
  • [11] BOOPATHI K., RAJESH P., RAMASAMY P., J. Cryst. Growth, 345 (2012), 1.
  • [12] LANG S.B., Phys. Rev. B, 4 (1971), 3603.
  • [13] BAYARJARGAL L., BOHATY L., Acta Crystallogr. A, 61 (2005), 393.
  • [14] LUNDGREN J.O., KVICK A., KARPPINEN R., LIMINGA R., ABRAHAMS S.C., J. Chem. Phys., 80 (1984), 423.
  • [15] BAYARJARGAL L., Cryst. Res. Technol., 43 (2008), 1138.
  • [16] CANTERFORD R.P., NINO F., J. Phys. Chem. C, 8 (1975), 1750.
  • [17] PRIYA R., KRISHNAN S., RAJ C.J., DAS S.J., Cryst. Res. Technol., 44 (2009), 1272.
  • [18] CZAPLA Z., DEBSKA M., LEBEDEVA E., PIROZERSKI A., Acta Phys. Pol. A, 99 (2001), 539.
  • [19] UEDA K., KAMINSKII A.A., Laser Phys., 15 (2005), 1509.
  • [20] GAVRILOVA N.D., MAKSIMOV E.G., NOVIKO V.K., DROZHDIN S.N., Fizika Tverdogo Tela, 27 (1985), 2597.
  • [21] MAGESHWARI P.S.L., PRIYA R., KRISHNAN S., JOSEPH V., DAS S.J., Optik,125 (2014), 2289.
  • [22] KAWADA K., MCGHIL A.R., LABES M.M., J. Chem. Phys., 52 (1970), 3121.
  • [23] HALI M., BOYSEN D.A., CHISHOLOM C.R., MERI R.B., Nature, 410 (2001), 910.
  • [24] LIM A.R., J. Phys.-Condens., Mat., 19 (2007), 11621.
  • [25] HEED B., LUNDEN A., SCHROEDER K., Electrochim. Acta, 22 (1977), 705.
  • [26] DESHPANDE V.K., SINGH K., Solid State Ionics, 6 (1982), 151.
  • [27] GOODENOUGH J.B., P. Roy. Soc. A-Math. Phy., 393 (1984), 215.
  • [28] SHELDRICK G.M., Acta Crystallogr. A, 64 (2008), 112.
  • [29] FARRUGIA L.J., J. Appl. Crystallogr., 30 (1997), 565.
  • [30] FARRUGIA L.J., J. Appl. Crystallogr., 32 (1999), 837.
  • [31] NARDELLI M., J. Appl. Crystallogr., 28 (1995), 659.
  • [32] SPEK A.L., Acta Crystallogr. D, 65 (2009), 148.
  • [33] LARSON A.C., Acta Crystallogr., 18 (1965), 717.
  • [34] RAVINDRA N.M., BHARADWAJ R.P., K.S. KUMAR K.S., SRIVASTAVA V.K., Infrared Phys. Techn., 21 (1981), 369.
  • [35] RAVINDRA N.M., SRIVASTAVA V.K., Infrared Phys. Techn., 67 (1980), 20.
  • [36] KRISHNAN S., RAJ C.J., ROBERT R., RAMANAND A., DAS S.J., Solid State Electron., 52 (2008), 1157.
  • [37] KUN Z., JUN L., JIANHONG L., YANG J., Chinese J. Chem. Eng., 20 (2012), 602.
  • [38] CAMACHO D.M., ROBERTS K., LEWTAS K., MORE I., J. Cryst. Growth, 416 (2015), 47.
  • [39] KRISHNAKUMAR V., NAGALAKSHMI R., Spectrochim. Acta A, 61 (2005), 499.
  • [40] JOHN XAVIER K.V., Spectrochim. Acta A, 60 (2005), 709.
  • [41] ROSHAN A., JOSEPH S.C., Mater. Lett., 49 (2001), 299.
  • [42] MAHESWARAN V.V., SHERWOOD S., BHAT J.N., J. Cryst. Growth, 179 (1997), 605.
  • [43] CIUPINAA T.N., PRODANA V., RUSUB G., GHEORGHIES G.I., VASILEC C., J. Optoelectron. Adv. M., 6 (1967), 211.
  • [44] KRISHNAN S., RAJ C.J., PRIYA S.M., ROBERT R., DINAKARAN S., DAS S.J., Cryst. Res. Technol., 8 (2008), 845.
  • [45] EYA D.O.O., EKPUNOBI A.J., OKEKE C.E., Acad. Open Internet J., 17 (2006), 1311.
  • [46] KRISHNAKUMAR V., JOHN XAVIER R., Spectrochim. Acta A, 60 (2004), 709.
  • [47] DENTON R.E., CAMPBELL R.D., TOMLIN S.G., J. Phys. D Appl. Phys., 5 (1972), 852.
  • [48] SHAH M.D., WANT B., Curr. Appl. Phys., 15 (2015), 64.
  • [49] SOUKIASSIAN A., TAGANTSEV A., SETTER N., Appl. Phys. Lett., 97 (2010), 192903.
  • [50] AHMAD M.M., MAKHLOUF S.A., KHALIL K.M.S., J. Appl. Phys., 100 (2006), 094323.
  • [51] SJOSTROM J., MATTSSON J., BERGMAN R., JOHANSSON E., JOSEFSSON K., SVANTESSON D., SWENSON J., Phys. Chem. Chem. Phys., 12 (2010), 10452.
  • [52] TAREEV B., Physics of Dielectric Materials, Mir Publishers, Moscow, 1975.
  • [53] JONSCHER A.K., Colloid Polym. Sci., 253 (1975), 231.
  • [54] BALAREW C., DUSHLEW R., J. Solid State Chem., 55 (1984), 1.
  • [55] JONSCHER A.K., IEEE T. Dielect. In., 27 (1992), 407.
  • [56] DUTTA P., BISWAS S., GHOSH M., DE S.K., CHATTERJEE S., Synthetic Met., 122 (2001), 455.
  • [57] HIGUCHI T., TSUKAMOTO T., YAMAGUCHI S., SATA N., HIRAMOTO K., ISHIGAME M., SHIN S., J. Appl. Phys., 41 (2002), 6440.
  • [58] ZHU B., LAI Z.H., MELLANDER B.E., Solid State Ionics, 70 (1994), 125.
  • [59] JONSCHER A.K., Nature, 267 (1977), 673.
  • [60] JONSCHER A.K., J. Mater. Sci., 16 (1981), 2037.
  • [61] YE Z.G., Handbook of Dielectric, Piezoelectric and Ferroelectric Materials, Woodhead Publishing Limited, Cambridge, 2008.
  • [62] VUILLEUMIER R., BORGIS D., Nat. Chem., 4 (2012), 432.
  • [63] BALAKRISHNAN T., RAMAMURTHI K., Mater. Lett., 62 (2008), 65.
  • [64] ONITSCH E.M., Mikroskopie, 95 (1956), 12.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-97d01620-c0e0-4993-8081-a8fe17957a99
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.