PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Logical Aspects of Dealing with Domain Knowledge in Data Mining with Association Rules

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
Rough Set Theory Workshop (RST’2015); (6; 29-06-2015; University of Warsaw )
Języki publikacji
EN
Abstrakty
EN
Association rules are introduced as general relations of two general Boolean attributes derived from columns of an analysed data matrix. Expressive power of such association rules makes possible to use various items of domain knowledge in data mining. Each particular item of domain knowledge is mapped to a set of simple association rules. Simple association rules together with their logical consequences are understood as a set of consequences of a given item of domain knowledge. Such sets of consequences are used when interpreting results of a data mining procedure. Logical deduction plays a crucial role in this approach. New results on related deduction rules are presented.
Wydawca
Rocznik
Strony
1--33
Opis fizyczny
Bibliogr. 32 poz., tab.
Twórcy
autor
  • University of Economics, Prague, nám. W. Churchilla 4, 130 67 Prague 3, Czech Republic
Bibliografia
  • [1] Agrawal R, Srikant R. Fast algorithms for mining association rules. Proceedings of the 20th International Conference on Very Large Data Bases, VLDB, 1994, p. 487–499. Available from: http://dl.acm.org/citation.cfm?id=645920.672836.
  • [2] Aggarwal ChC. Data Mining. The Textbook, Springer-Verlag, Berlin, 2015. ISBN: 13:978-3319141411, 10:3319141414. doi:10.1007/978-3-319-14142-8.
  • [3] Brin S, Rastogi R, Kyuseok S. Mining optimized gain rules for numeric attributes. IEEE Transactions on Knowledge and Data Engineering, 2003:15(2):324–338. doi:10.1109/TKDE.2003.1185837. Available from: http://dx.doi.org/10.1109/TKDE.2003.1185837.
  • [4] Brossette SE, Sprague AP, Hardin JM, Waites KB, Jones WT, Moser SA. Association rules and data mining in hospital infection control and public health surveillance. Journal of the American Medical Informatics Association (JAMIA), 1998;5(4):373–381.
  • [5] Delgado M, Sanchez D, Martin-Bautista MJ, Vila MA. Mining association rules with improved semantics in medical databases. Artificial Intelligence in Medicine, 2001;21(1-3):241–245. doi:10.1016/S0933-3657(00)00092-0. Available from: http://dx.doi.org/10.1016/S0933-3657(00)00092-0.
  • [6] Delgado M, Ruiz MD, Sanchez D. New Approaches for Discovering Exception and Anomalous Rules. International Journal of Uncertainty and Knowledge-based Systems, 2011;19(2):361–399. Available from: http://dx.doi.org/10.1142/S0218488511007039.
  • [7] Fukuda T, Morimoto Y, Morishita S, Tokuyama T. Mining Optimized Association Rules for Numeric Attributes. Journal of Computer and System Sciences, 1999;58(1):1–12. doi:10.1006/jcss.1998.1595.
  • [8] Gasmi G, Yahia SB, Nguifo EM, Bouker S. Extraction of Association Rules Based on Literalsets. Proceedings of the 9th International Conference on Data Warehousing and Knowledge Discovery DaWaK’07. (S. IlYeal et al., Eds.), Springer-Verlag, Berlin, 2007, p. 293–302. Available from: http://dl.acm.org/citation.cfm?id=2391952.2391987.
  • [9] Geng L, Hamilton HJ. Interestingness Measures for Data Mining: A survey. ACM Computing Surveys (CSUR), 2006;38(3):1–32. doi:10.1145/1132960.1132963, Available from: http://doi.acm.org/10.1145/1132960.1132963.
  • [10] Hájek P, Havránek T. Mechanising Hypothesis Formation - Mathematical Foundations for a General Theory. Springer, Berlin Heidelberg New York, 1978. doi:10.1007/978-3-642-66943-9. Available from: http://www.cs.cas.cz/hajek/guhabook/.
  • [11] Hájek P, Sochorová A, Zvárová J. GUHA for personal computers. Computational Statistics & Data Analysis, 1995;19(2):149–153. doi:10.1016/0167-9473(93)E0053-7.
  • [12] Hájek P, Holeňa M, Rauch J. The GUHA method and its meaning for data mining. Journal of Computer and System Sciences, 2010;76(1):34–48. doi:10.1016/j.jcss.2009.05.004.
  • [13] Hamrouni T, Yahia BS, Nguifo EM. Generalization of association rules through disjunction. Annals of Mathematics and Artificial Intelligence, 2010;59(2):201–222. doi:10.1007/s10472-010-9192-z.
  • [14] Lent B, Swami A, Widom J. Clustering association rules. Data Engineering, 1997. Proceedings. 13th International Conference, 1997, p. 220–231. doi:10.1109/ICDE.1997.581756.
  • [15] Mansingh G, Osei-Bryson KM, Reichgelt H. Using ontologies to facilitate post-processing of association rules by domain experts. Journal Information Sciences, 2011;181(3):419–434. doi:10.1016/j.ins.2010.09.027.
  • [16] Minaei-Bidgoli B, Barmaki R, Nasiri M. Mining numerical association rules via multi-objective genetic algorithms. Journal Information Sciences 2013;233:15–24. doi:10.1016/j.ins.2013.01.028.
  • [17] Ordonez C, Ezquerra N, Santana CA. Constraining and Summarizing Association Rules in Medical Data. Journal Knowledge and Information Systems (KAIS), 2006;9(3):259–283. doi:10.1007/sl0115-005-0226-5.
  • [18] Qiang Y, Xindong W. 10 Challenging Problems in Data Mining Research. International Journal of Information Technology & Decision Making, 2006;5(4):597–604. Available from: http://dx.doi.org/10.1142/S0219622006002258.
  • [19] Ralbovský M, Kuchař T. Using Disjunctions in Association Mining. Proceedings of the 7th Industrial Conference on Advances in Data Mining: Theoretical Aspects and Applications, ICDM’07, (P. Perner, Ed.), LNCS 4597, Springer-Verlag, Berlin, 2007, p.339-351. doi:10.1007/978-3-540-73435-2_27.
  • [20] Rauch J. Some Remarks on Computer Realizations of GUHA Procedures. International Journal of Man-Machine Studies. 1978;10(1):23–28. doi:10.1016/S0020-7373(78)80032-7.
  • [21] Rauch J. Domain Knowledge and Data Mining with Association Rules - a Logical Point of View. Proceedings of the 20th International Conference on Foundations of Intelligent Systems, ISMIS’12, (L. Chen et al., Eds.), LNCS 7661, Springer-Verlag, Berlin, 2012, p. 11–20. doi:10.1007/978-3-642-34624-8_2.
  • [22] Rauch J. Observational Calculi and Association Rules. Studies in Computational Intelligence 469, Springer-Verlag, Berlin, 2013. doi:10.1007/978-3-642-11737-4.
  • [23] Rauch J. Formal Framework for Data Mining with Association Rules and Domain Knowledge – Overview of an Approach. Fundamenta Informaticae, 2003;137(2):171–217. doi:10.3233/FI-2015-1175.
  • [24] Rauch J, Šimůnek M. An Alternative Approach to Mining Association Rules, in: Foundations of Data Mining and Knowledge Discovery (T.Y. Lin et al., Eds.), Studies in Computational Intelligence 6, Springer-Verlag, Berlin, 2005, p. 211–231. doi:10.1007/11498186_13.
  • [25] Rauch J, Šimůnek M. Dealing with Background Knowledge in the SEWEBAR Projec, in: Knowledge Discovery Enhanced with Semantic and Social Information (B. Berendt, et al., Eds.), Springer-Verlag, Berlin, 2009, p. 89–106. doi:10.1007/978-3-642-01891-6_6.
  • [26] Rauch J, Šimůnek M. Applying Domain Knowledge in Association Rules Mining Process - First Experience. 19th International Symposium, ISMIS 2011, Warsaw, Poland, June 28-30, 2011. Proceedings (M. Kryszkiewicz et al., Eds.), in: Foundations of Intelligent Systems, LNCS 6804, Springer-Verlag, Berlin, 2011, p. 113–122. doi:10.1007/978-3-642-21916-0_13.
  • [27] Rauch J, Šimůnek M. Learning Association Rules from Data through Domain Knowledge and Automation. 8th International Symposium, RuleML 2014, Co-located with the 21st European Conference on Artificial Intelligence, ECAI 2014, Prague, Czech Republic, August 18-20, 2014. Proceedings (A. Bikakis et al., Eds.), in: Rules on the Web. From Theory to Applications LNCS 8620, Springer-Verlag, Berlin, 2014, p. 266–280. doi:10.1007/978-3-319-09870-8_20.
  • [28] Rajeev Rastogia R, Kyuseok S. Mining optimized support rules for numeric attributes. Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’99, in: ACM Press, New York, NY, USA 1999, p. 135–144. doi:10.1145/312129.312217.
  • [29] Romei A, Turini F. Inductive database languages: requirements and examples. Knowledge and Information Systems, 2011;26(3):351–384. doi:10.1007/s10115-009-0281-4.
  • [30] Srikant R, Agrawal R. Mining generalized association rules. Future Generation Computer Systems, 1997; 13(2-3):161–180.
  • [31] Suzuki E. Undirected Discovery of Interesting Exception Rules. International Journal of Pattern Recognition and Artificial Intelligence, 2002;16(8):1065–1086. doi: http://dx.doi.org/10.1142/S0218001402002155.
  • [32] Šimůnek M. Academic KDD Project LISp-Miner, in: Intelligent Systems Design and Applications 23, Advances in Soft Computing, (A. Abraham et al., Eds.), Springer-Verlag, Berlin, 2003, p. 263–272. doi:10.1007/978-3-540-44999-7_25.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-97ce0764-febb-4db6-8e70-e8acc2c2aa7f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.