PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Verification of selected models of the size effect based on high-cycle fatigue testing on mini specimens made of EN AW-6063 aluminum alloy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The study presents several cases where use of specimens with reduced overall dimensions, i.e. mini specimens in the course of fatigue tests is advantageous. The high-cycle fatigue tests based on a developed method have been performed on mini specimens and normative specimens (comparative tests). The tests have been conducted on EN AW-6063 aluminum alloy specimens. A correction coefficient determined as a result of monotonic tests and selected models of the size effect have been critically assessed based on the test results. A statistical Weibull’s weakest link model and a monofractal approach based on a fractal dimension have been verified.
Rocznik
Strony
883--894
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
  • University of Technology and Life Sciences in Bydgoszcz, Faculty of Mechanical Engineering, Bydgoszcz, Poland
autor
  • University of Technology and Life Sciences in Bydgoszcz, Faculty of Mechanical Engineering, Bydgoszcz, Poland
  • University of Technology and Life Sciences in Bydgoszcz, Faculty of Mechanical Engineering, Bydgoszcz, Poland
Bibliografia
  • 1. Băzant Z.P., 1984, Size effect in blunt fracture concrete, rock, metal, Journal of Engineering Mechanics ASCE, 110, 518-535
  • 2. Brueggeman W.C., Mayer M.Jr., 1948, Axial fatigue tests at zero mean stress of 24S-T and 75S-T aluminum-alloy strips with a central circular hole, National Advisory Committee for Aeronautics, 1611, 1-24
  • 3. Carpinteri A., Spagnoli A., Vantadori S., 2001, An approach to size effect in fatigue of metals using fractal theories, Fatigue and Fracture of Engineering Materials and Structures, 25, 619-627
  • 4. Carpinteri A., Spagnoli A., Vantadori S., 2009, Size effect in S-N curves: A fractal approach to finite-life fatigue strength, International Journal of Fatigue, 31, 927-933
  • 5. Flaceliere L., Morel F., 2004, Probabilistic approach in high-cycle multiaxial fatigue: volume and surface effects, Fatigue and Fracture of Engineering Materials and Structures, 27, 1123-1135
  • 6. Furuya Y., 2011, Notable size effects on very high cycle fatigue properties of high-strength steel, Materials Science and Engineering A, 528, 5234-5240
  • 7. Haftirman, 2009, The size effect on fatigue strength of structural steel materials in high-humidity environment, Proceedings of International Conference on Applications and Design in Mechanical Engineering
  • 8. Hirose T., Sakasegawa H., Kohyama A., Katoh Y., Tanigawa H., 2000, Effect of specimen size on fatigue properties of reduced activation ferritic/martensitic steels, Journal of Nuclear Materials, 283/287, 1018-1022
  • 9. Hyler W.S., Lewis R.A., Groverh J., 1954, Experimental investigation of notch-size effects on rotating-beam fatigue behaviour of 75S-T6 aluminum alloy, National Advisory Committee for Aeronautics, 3291, 1-47
  • 10. Karolczuk A., Palin-Luc T., 2013, Modelling of stress gradient effect on fatigue life using Weibull based distribution function, Journal of Theoretical and Applied Mechanics, 51, 297-311
  • 11. Kocańda S., Szala J., 1997, Bases of Fatigue Calculation (in Polish), PWN
  • 12. PN-74/H-04327 The study of metal fatigue. The test of axial tension-compression at constant cycle of external loads (in Polish)
  • 13. PN-EN ISO 6892-1:2010 Metals – Tensile testing – Part 1: Test method at room temperature (in Polish)
  • 14. Schijve J., 2009, Fatigue of Structures and Materials, Springer
  • 15. Sonsino C.M., 2007, Course of SN-curves especially in the high-cycle fatigue regime with regard to component design and safety, International Journal of Fatigue, 29, 2246-2258
  • 16. Sosnovski L.A., 1990, Statistical model of a deformable solid with a critical volume and some of its applications, Strength of Materials, 22, 626-632
  • 17. Tomaszewski T., Sempruch J., 2012, Determination of the fatigue properties of aluminum alloy using mini specimen, Materials Science Forum, 726, 63-68
  • 18. Tomaszewski T., Sempruch J., 2013, Application of monofractal approach to describe size effect in fatigue life prediction for aluminum alloys, Materials of 30th Danubia-Adria Symposium, 173-174
  • 19. Tomaszewski T., Sempruch J., 2014, Verification of the fatigue test method applied with the use of mini specimen, Key Engineering Materials, 598, 243-248
  • 20. Troshchenko V.T., Sosnowski L.A., 1987, Fatigue Resistance of Metals and Alloys (in Russian), Academy of Sciences of the Ukrainian SSR
  • 21. Weibull W., 1939, A statistical theory of the strength of materials, Royal Swedish Institute For Engineering Research, 151
  • 22. Weibull W., 1949, A statistical representation of fatigue failures in solids, Transaction of the Royal Institute of Technology, 27
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-97c360b2-5119-44c8-a3e0-9655888932ff
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.