PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Zastosowanie cyklodekstryn w technologii wdrukowania molekularnego

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Application of cyclodextrins in molecular imprinting technology
Języki publikacji
PL
Abstrakty
EN
In the last decade molecular imprinted polymers (MIP) have gained great interest in the area of selective recognition various type substances. Scientific work in this field is carried out very intensively - the methods of synthesis are modified and improved, new types of hydride materials are created, as well as new reagents for synthesis. In this case, cyclodextrins (CD) and their analogues show good molecular recognition ability for its unique physical and chemical properties and suitable cavity structure. As a result, these supramolecular ligands can perform various functions in the MIP technology, and the resulting polymeric materials are characterized by high selectivity and binding specificity (recognition) of analytes structurally matched to the MIP cavity. Of particular importance is the fact that cyclodextrins enable the imprinting not only of low-molecular-weight biologically active compounds, but also of high-molecular molecules (proteins, peptides). The numerous hydroxyl groups available in cyclodextrins are active sites that can form different types of linkages. They can be cross-linked with one another, or they can be derivatized to produce monomers that can form linear or branched networks. This article provides a detailed review of MIPs based on CD and their application in the field of separation science and analytical chemistry in recent years. The discussion is grouped according to the different role of CD in MIPs, that is, functional monomer, carrier modifier, etc.
Rocznik
Strony
677--699
Opis fizyczny
Bibliogr. 52 poz., rys., wykr.
Twórcy
  • Katedra Chemii Analitycznej, Wydział Chemii, Uniwersytet Opolski, pl. Kopernika 11a, 45-040 Opole
  • Katedra Chemii Analitycznej, Wydział Chemii, Uniwersytet Opolski, pl. Kopernika 11a, 45-040 Opole
  • Katedra Chemii Analitycznej, Wydział Chemii, Uniwersytet Opolski, pl. Kopernika 11a, 45-040 Opole
Bibliografia
  • [1] F. Seidi, A.A. Shamsabadi, M. Amini, M. Shabanian, D. Crespy, Polym. Chem., 2019, 10 (27), 3674.
  • [2] J. Wankar, N.G. Kotla, S. Gera, S. Rasala, A. Pandit, Y.A. Rochev, Adv. Func.Mater., 2020, 30 (44), 1909049.
  • [3] X. Zhao, Y. Wang, P. Zhang, Z. Lu, Y. Xiao, Macromol. Rapid Commun., 2021, 42 (9), 2100004.
  • [4] S. Fanali, J Chromatogr A, 2000, 875 (1-2), 89.
  • [5] E. Rudzińska, A. Poliwoda, Ł. Berlicki, A. Mucha, P. Dżygiel, P.P. Wieczorek, P. Kafarski, J Chromatogr A, 2007, 1138 (1), 284.
  • [6] P. Wieczorek, Stereoisomers Separation, in Electromigration Techniques: Theory and Practice, B. Buszewski, E. Dziubakiewicz, and M. Szumski, Editors. 2013, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 237.
  • [7] O.I. Parisi, F. Francomano, M. Dattilo, F. Patitucci, S. Prete, F. Amone, F. Puoci, J Function. Biomater., 2022, 13 (1), 12.
  • [8] W. Chen, X. Tian, W. He, J. Li, Y. Feng, G. Pan, BMC Materials, 2020, 2 (1), 1.
  • [9] G. Wulff, Microchim. Acta, 2013, 180 (15), 1359.
  • [10] G. Wulff, A. Sarhan, K. Zabrocki, Tetrahedron Lett., 1973, 14 (44), 4329.
  • [11] R. Arshady, K. Mosbach, Die Makromol. Chem., 1981, 182 (2), 687.
  • [12] H. Yan, K.H. Row, International J Mol. Sci., 2006, 7 (5), 155.
  • [13] A. Poliwoda, P. Wieczorek, Bioanalityka w nauce i życiu Wydawnictwo Naukowe PWN Warszaw 2020.
  • [14] M. Marć, J. Namieśnik, P. Wieczorek, Przem.Chem., 2017, 96 (6), 7.
  • [15] G. Vlatakis, L.I. Andersson, R. Müller, K. Mosbach, Nature, 1993, 361 (6413), 645.
  • [16] E. Turiel, A. Martín-Esteban, Anal. Chim. Acta, 2010, 668 (2), 87.
  • [17] M. Marć, T. Kupka, P.P. Wieczorek, J. Namieśnik, TrAC Trends Anal. Chem., 2018, 98, 64.
  • [18] A. Katz, M.E. Davis, Macromolecules, 1999, 32 (12), 4113.
  • [19] V. Pichon, F. Chapuis-Hugon, Anal Chim Acta, 2008, 622 (1-2), 48.
  • [20] M. Marć, P.P. Wieczorek, Sci. Total Environ., 2020, 724, 138151.
  • [21] M. Marć, P.P. Wieczorek, Chapter One - Introduction to MIP synthesis, characteristics and analytical application, in Comprehensive Analytical Chemistry, M. Marć, Editor. 2019, Elsevier, Amsterdam, 1.
  • [22] E. Turiel, M. Díaz-Álvarez, A. Martín-Esteban, J Chromatogr A, 2016, 1432, 1.
  • [23] M. Marć, M. Bystrzanowska, K. Pokajewicz, M. Tobiszewski, Mater., 2021, 14 (22), 7078.
  • [24] P.A. Cormack, A.Z. Elorza, J Chromatogr B, Anal. Technol. Biomed. Life Sci, 2004, 804 (1), 173.
  • [25] E.V. Piletska, A.R. Guerreiro, M.J. Whitcombe, S.A. Piletsky, Macromolecules, 2009, 42 (14), 4921.
  • [26] G. Vasapollo, R.D. Sole, L. Mergola, M.R. Lazzoi, A. Scardino, S. Scorrano, G. Mele, Int. J of Mol. Sci., 2011, 12 (9), 5908.
  • [27] S. Scorrano, L. Longo,G. Vasapollo, Anal. Chim. Acta, 2010, 659 (1-2), 167.
  • [28] M. Dinc, C. Esen, B. Mizaikoff, TrAC Trends Anal. Chem., 2019, 114, 202.
  • [29] M. Sobiech, P. Luliński, P.P. Wieczorek, i M. Marć, TrAC Trends Anal. Chem., 2021, 142, 116306.
  • [30] C. Alexander, H.S. Andersson, L.I. Andersson, R.J. Ansell, N. Kirsch, I.A. Nicholls, J. O'Mahony, M.J. Whitcombe, J Mol. Recognit., 2006, 19 (2), 106.
  • [31] S. Dhanashree, M. Priyanka, K. Manisha, K. Vilasrao, Curr. Drug Deliv., 2016, 13 (5), 632.
  • [32] H. Asanuma, T. Hishiya, M. Komiyama, Adv. Mater., 2000, 12 (14), 1019.
  • [33] A.H. Karoyo, L.D. Wilson, Nanomater., 2015, 5 (2), 981.
  • [34] F. Feng, Z.M. Liu, Z.G. Xu, Adv. Mater. Res., 2015, 1101, 256.
  • [35] J. Shang, X. Le, J. Zhang, T. Chen, P. Theato, Polym. Chem., 2019, 10 (9), 1036.
  • [36] N. Suda, H. Sunayama, Y. Kitayama, Y. Kamon, T. Takeuchi, R. Soc. Open Sci, 2017, 4 (8), 170300.
  • [37] E.M.M. Del Valle, Process Biochem., 2004, 39 (9), 1033.
  • [38] H.-A. Tsai, M.-J. Syu, Biomaterials, 2005, 26 (15), 2759.
  • [39] J.Z. Szejtli, Cyclodextrin technology Kluwer Academic Publishers Dordrecht; Boston 1988.
  • [40] X. Zheng, X.L. Ma, H.F. Xie, S.B. Li, Y.X. Ren, Z. Chen, Adv.Mater.s Res., 2011, 284-286, 1850.
  • [41] S. Farooq, B. Chen, S. Ahmad, I. Muhammad, Q. Hussain, H. Wu, Nanomater., 2022, 12 (6), 1017.
  • [42] K. Wybrańska, K. Szczubiałka, M. Nowakowska, J Incl. Phenom. Macrocycl. Chem., 2008, 61 (1), 147.
  • [43] X. Zhang, N. Zhang, C. Du, P. Guan, X. Gao, C. Wang, Y. Du, S. Ding, X. Hu, Chem. Eng. J, 2017, 317, 988.
  • [44] W. Zhang, L. Qin, X.-W. He, W.-Y. Li, Y.-K. Zhang, J Chromatogr. A, 2009, 1216 (21), 4560.
  • [45] D. Huang, Z. Tang, Z. Peng, C. Lai, G. Zeng, C. Zhang, P. Xu, M. Cheng, J. Wan, R. Wang, J Taiwan Inst. Chem. Eng., 2017, 77, 113.
  • [46] S.-H. Song, K. Shirasaka, Y. Hirokawa, H. Asanuma, T. Wada, J. Sumaoka, M. Komiyama, Supramol. Chem., 2010, 22 (3), 149.
  • [47] L. Qin, X.-W. He, W.-Y. Li, Y.-K. Zhang, J Chromatogr A, 2008, 1187 (1), 94.
  • [48] J. Pan, X. Zou, X. Wang, W. Guan, Y. Yan, J. Han, Chem Eng J, 2010, 162 (3), 910.
  • [49] C. Wang, L. Cheng, L. Zhang, Y. Zuo, J Sep. Sci., 2019, 42 (6), 1248.
  • [50] S. Hua, Y. Hu, L. Zhao, L. Cao, X. Wang, J. Gao, C. Xu, Energy & Fuels, 2019, 33 (12), 12637.
  • [51] Y. Zhou, H. Liu, J. Li, Z. Sun, T. Cai, X. Wang, S. Zhao, B. Gong, J Chromatogr A, 2020, 1613, 460684.
  • [52] J. Dolai, H. Ali, N.R. Jana, ACS Appl. Polymer Mater., 2020, 2 (2), 691.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-97c0d944-57d5-4e57-abdc-9830a315a8df
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.