PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of Failure Process of Maraging Steel Produced by Selective Laser Melting (SLM)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An investigation of the failure process of maraging steel grade X3NiCoTi18-9-5 produced by the SLM method that is subjected to various three-dimensional stress-states has been carried out. In this paper, deformations and damage evolution are analysed experimentally and numerically. Three microstructures of the SLM steel were obtained after the appropriate heat treatment. Tensile tests of smooth specimens and axisymmetric notched specimens have been performed. Numerical models of the samples with ring notches were made in order to determine the stress state and displacement field in the notch area at the moment of the sample’s breakage as well as to compare the experimentally determined effective strain in the notch after the sample’s breakage with the deformation being calculated on the basis of the numerical solution. As a result of the research, it was found that the type of fracture of samples obtained from X3NiCoTi18-9-5 steel powder by the SLM method depends on the size of the ring notch’s radius. Based on the performed numerical calculations and experimental tests, it was found that, for each of the analysed variants of heat treatment, it was possible to indicate the approximate limit value of triaxiality factor Tf, above which there is a scrap of brittle X3NiCoTi18-9-5 steel produced by the SLM method. This value is determined by the characteristic bending of the function that determines the relationship between triaxiality factor Tf and effective strain eeff.
Twórcy
  • AGH University of Science and Technology, Faculty of Foundry Engineering, Al. Mickiewicza 30, 30-059 Kraków, Poland
  • AGH University of Science and Technology, Faculty of Foundry Engineering, Al. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • [1] D. Herzog, V. Seyda, E. Wycisk, C. Emmelmann, Acta Materialia 117, 371-392 (2016). DOI: https://doi.org/10.1016/j.actamat.2016.07.019
  • [2] C.Y. Yap, C.K. Chua, Z.L. Dong, Z.H. Liu, D.Q. Zhang, L.E. Loh, S.L. Sing, Applied Physics Reviews 2, 041101 (2015). DOI: https://doi.org/10.1063/1.4935926
  • [3] E.O. Olakanmi, R.F. Cochrane, K.W. Dalgarno, Progress in Materials Science 74, 401-477 (2015). DOI: https://doi.org/10.1016/j.pmatsci.2015.03.002
  • [4] J. Piekło, A. Garbacz-Klempka, Archives of Foundry Engineering 21 (2), 9-16 (2021). DOI: https://doi.org/10.24425/afe.2021.136092
  • [5] I. Yadroitsev, P. Krakhmalev, I. Yadroitsava, S. Johansson, I. Smurov, Journal of Materials Processing Technology 213 (4), 606-613 (2013). DOI: https://doi.org/10.1016/j.jmatprotec.2012.11.014
  • [6] Y. Kajimaa, A. Takaichia, T. Nakamotob, T. Kimurab, N. Kittikundechaa, Y. Tsutsumic, N. Nomurad, A. Kawasaki, H. Takahashie, T. Hanawac, N. Wakabayashi, Journal of the Mechanical Behavior of Biomedical Materials 78, 1-9, (2018). DOI: https://doi.org/10.1016/j.jmbbm.2017.11.009
  • [7] R. Branco, J.D. Costa, J.A. Martins Ferreira, C. Capela, F.V. Antunes, W. Macek, Materials and Design 201 (2021). DOI: https://doi.org/10.1016/j.matdes.2021.1094691116
  • [8] M.C. Brennan, J.S. Keist, T.A. Palmer, Journal of Materials Engineering and Performance 30, 4808-4818 (2021). DOI: https://doi.org/10.1007/s11665-021-05919-6
  • [9] W. Wu, X. Wang, Rapid Prototyping Journal, (2020). DOI: https://doi.org/10.1108/RPJ-08-2018-0189
  • [10] I. Milne, R.O. Ritche, B.L. Karihaloo, Comprehensive structural integrity, Amsterdam: Elsevier, Pergamon (2003).
  • [11] J. Lachowski, J. Borowiecka-Jamrozek, Archives of Foundry Engineering 21 (2), 29-34 (2021). DOI: https://doi.org/10.24425/afe.2021.136094
  • [12] J. Piekło, M. Małysza, R. Dańko, Archives of Civil and Mechanical Engineering 18, 1300-1308 (2018). DOI: https://doi.org/10.1016/j.acme.2018.03.007
  • [13] J. Piekło, M. Maj, Archives of Foundry Engineering 9 (2), 25-28 (2009).
  • [14] P.W. Bridgman, Studies in Large Flow and Fracture, Mc Graw-Hill, New York (1952).
  • [15] F. Rivalta, L. Ceschini, A.E.W. Jarfors Roland, R. Stolt, Metals 11, 1-31 (2021). DOI: https://doi.org/10.3390/met11050826
  • [16] J. Piekło, Zastosowanie metody przyrostowej SLM do wykonania wybranych elementów układu chłodzenia form ciśnieniowych, Wydawnictwo Naukowe Akapit, Kraków (2019).
  • [17] J. Piekło, A. Garbacz-Klempka, Materials 13 (23), 5533 (2020). DOI: https://doi.org/10.3390/ma13235533
  • [18] R. Casati, J.N. Lemke, A. Tuissi, M. Vedani, Metals 6, 218 (2016). DOI: https://doi.org/10.3390/met6090218
  • [19] F.F. Conde, J.D. Escobar, J. Rodriguez, C.R.M. Afonso, M.F. Oliveira, J.A. Avila, Journal of Materials Engineering and Performance 30, 4925-4936 (2021). DOI: https://doi.org/10.1007/s11665-021-05553-2
  • [20] W.K. Law, K.C. Wong, H. Wang, Z. Sun, C.L. Lim, Journal of Materials Engineering and Performance 30, 6389-6405 (2021). DOI: https://doi.org/10.1007/s11665-021-05948-1
  • [21] E. Yasa, K. Kempen, J.P. Kruth, Microstructure and mechanical properties of maraging steel 300 after selective laser melting. In: Proceedings of the Solid Freeform Fabrication Symposium Proceedings, Austin, TX, USA (2010).
  • [22] Y. Bai, D. Wang, Y. Yang, H. Wang, Material Science and Engineering. A, 760, 105-117 (2019). DOI: https://doi.org/10.1016/j.msea.2019.05.115
  • [23] K. Kempen, E. Yasa, L. Thijs, J.P. Kruth, J. Van Humbeeck, Phys. Procedia 12, 255-263 (2011).
  • [24] J. Piekło, A. Garbacz-Klempka, Effect of heat treatment of the microstructure and mechanical properties of the maraging steel produced by Selective Laser Melting process intended to make parts of a die casting die, in: J.J. Sobczak, P. Zięba, (Eds.), Metalurgia 2020, Gliwice (2021).
  • [25] SIMULIA Dassault System, Abaqus analysis user’s manual, 2019.
  • [26] M. Biel-Gołaska, Fatigue & Fracture of Engineering Materials & Structures 21, 965-975 (1998).
Uwagi
1. This research was supported by the National Centre for Research and Development in the framework of “Ścieżka dla Mazowsza”. This program is under the project “Development and commissioning of an innovative die-casting technology with the use of targeted crystallization used to improve the quality of the structure and surface of small-sized details” No. MAZOWSZE/0011/19.
2. Thanks to the RCiT company from Radom, Poland, for their cooperation and for enabling the production of samples that were necessary for the implementation of our research.
3. Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-97c0c1c8-a380-4e37-b416-bf16b50a2441
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.