PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Image encryption algorithm based on rear-mounted phase mask and random decomposition

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To escalate the image encryption a new method has been devised which includes double random phase encoding (DRPE) using rear phase masking and random decomposition (RD) technique stranded on fractional Fourier transform. Here, asymmetric cryptographic system is developed in fractional Fourier transform (FrFT) mode using two random phase masks (RPM) and a rear mounted phase mask. In the projected scheme a colored image is decomposed into R, G and B channels. The amplitude of each channel is normalized, phase encoded and modulated using RPM. The modulated R, G and B channels of the colored image are individually transformed using FrFT to produce corresponding encrypted image. The proposed scheme is authorized on grayscale image also. The norm behind the development of the suggested scheme has been elaborated by carrying out cryptanalysis on system based on the RD. The method helps in escalations of the protection of double random phase encoding by cumulating the key length and the parameter amount, so that it vigorously can be used against various attacks. The forte of the suggested cryptographic system was verified using simulations with MATLAB 7.9.0 (R2008a). The efficiency of the suggested scheme includes the analysis using singular value decomposition (SVD), histogram and correlation coefficient.
Czasopismo
Rocznik
Strony
195--212
Opis fizyczny
Bibliogr. 45 poz., rys., tab.
Twórcy
  • Department of Applied Sciences, The NorthCap University, Gurugram, India
autor
  • Department of Applied Sciences, The NorthCap University, Gurugram, India
Bibliografia
  • [1] JAVIDI B., Optical and Digital Techniques for Information Security, Springer Sci. Business Media, 2005.
  • [2] MATOBA O., NOMURA T., PEREZ-CABRE E., MILLAN M.S., JAVIDI B., Optical techniques for information security, Proceedings of the IEEE 97(6), 2009, pp. 1128–1148, DOI: 10.1109/JPROC.2009.2018367.
  • [3] GONG L., QIU K., DENG C., ZHOU N., An optical image compression and encryption scheme based on compressive sensing and RSA algorithm, Optics and Lasers in Engineering 121, 2019, pp. 169–180, DOI: 10.1016/j.optlaseng.2019.03.006.
  • [4] REFREGIER P., JAVIDI B., Optical image encryption based on input plane and Fourier plane random encoding, Optics Letters 20(7), 1995, pp. 767–769, DOI: 10.1364/OL.20.000767.
  • [5] GOODMAN J.W., Introduction to Fourier Optics, 2nd Ed., McGraw-Hill, New York, 1996.
  • [6] UNNIKRISHNAN G., SINGH K., Double random fractional Fourier domain encoding for optical security, Optical Engineering 39(11), 2000, pp. 2853–2859, DOI: 10.1117/1.1313498.
  • [7] RAJPUT S.K., NISHCHAL N.K., Image encryption based on interference that uses fractional Fourier domain asymmetric keys, Applied Optics 51(10), 2012, pp. 1446–1452, DOI: 10.1364/AO.51.001446.
  • [8] DAHIYA M., SUKHIJA S., SINGH H., Image encryption using quad phase masks in fractional Fourier domain and case study, IEEE International Advance Computing Conference (IACC), 2014, pp. 1048–1053, DOI: 10.1109/IAdCC.2014.6779470.
  • [9] MAAN P., SINGH H., Non-linear cryptosystem for image encryption using radial Hilbert mask in fractional Fourier transform domain, 3D Research 9, 2018, article 53, DOI: 10.1007/s13319-018-0205-8.
  • [10] HENNELLY B.M., SHERIDAN J.T., Random phase and jigsaw encryption in the Fresnel domain, Optical Engineering 43(10), 2004, DOI: 10.1117/1.1790502.
  • [11] SITU G., ZHANG J., Double random-phase encoding in the Fresnel domain, Optics Letters 29(14), 2004, pp. 1584–1586, DOI: 10.1364/OL.29.001584.
  • [12] RAJPUT S.K., NISHCHAL N.K., Fresnel domain nonlinear optical encryption scheme based on Gerchberg-Saxton phase-retreival algorithm, Applied Optics 53(3), 2014, pp. 418–425, DOI: 10.1364/AO.53.000418.
  • [13] SINGH H., YADAV A.K., VASHISTH S., SINGH K., Optical image encryption using devil’s vortex toroidal lens in the Fresnel transform domain, International Journal of Optics, Vol. 2015, 2015, article 926135, DOI: 10.1155/2015/926135.
  • [14] RODRIGO J.A., ALIEVA T., CALVO M.L., Gyrator transform: properties and applications, Optics Express 15(5), 2007, pp. 2190–2203, DOI: 10.1364/OE.15.002190.
  • [15] RODRIGO J.A., ALIEVA T., CALVO M.L., Applications of gyrator transform for image processing, Optics Communications 278(2), 2007, pp. 279–284, DOI: 10.1016/j.optcom.2007.06.023.
  • [16] PEI S.C., DING J.J., Properties, digital implementation, applications and self image phenomena of the gyrator transform, Proceedings 17th European Signal Processing Conference (EURASIP), 2009, pp. 441–445.
  • [17] ZHOU N.R., WANG Y., GONG L., Novel optical image encryption scheme based on fractional Mellin transform, Optics Communications 284(13), 2011, pp. 3234–3242, DOI: 10.1016/j.optcom.2011.02.065.
  • [18] VASHISTH S., SINGH H., YADAV A.K., SINGH K., Devil’s vortex phase structure as frequency plane mask for image encryption using the fractional Mellin transform, International Journal of Optics, Vol. 2017, 2014, article 728056, DOI: 10.1155/2014/728056.
  • [19] SINGH H., Watermarking image encryption using deterministic phase mask and singular value decomposition in fractional Mellin transform domain, IET Image Processing 12(11), 2018, pp. 1994–2001, DOI: 10.1049/iet-ipr.2018.5399.
  • [20] ZHOU N.R., HUANG L.X., GONG L.H., ZENG Q.W., Novel quantum image compression and encryption algorithm based on DQWT and 3D hyper-chaotic Henon map, Quantum Information Processing 19, 2020, article 284, DOI: 10.1007/s11128-020-02794-3.
  • [21] YE H.S., ZHOU N.R., GONG L.H., Multi-image compression-encryption scheme based on quaternion discrete fractional Hartley transform and improved pixel adaptive diffusion, Signal Processing 175, 2020, article 107652, DOI: 10.1016/j.sigpro.2020.107652.
  • [22] HARTLEY R.V.L., A more symmetrical fourier analysis applied to transmission problems, Proceedings of the IRE 30(3), 1942, pp. 144–150, DOI: 10.1109/JRPROC.1942.234333.
  • [23] CARNICER A., MONTES-USATEGUI M., ARCOS S., JUVELLS I., Vulnerability to chosen-ciphertext attacks of optical encryption schemes based on double random phase keys, Optics Letters 30(13), 2005, pp. 1644–1646, DOI: 10.1364/OL.30.001644.
  • [24] FRAUEL Y., CASTRO A., NAUGHTON T.J., JAVIDI B., Resistance of the double random phase encryption against various attacks, Optics Express 15(16), 2007, pp. 10253–10265, DOI: 10.1364/OE.15.010253.
  • [25] PENG X., ZHANG P., WEI H., YU B., Known-plaintext attack on optical encryption based on double random phase keys, Optics Letters 31(8), 2006, pp. 1044–1046, DOI: 10.1364/OL.31.001044.
  • [26] RAJPUT S.K., NISHCHAL N.K., Known-plaintext attack on encryption domain independent optical asymmetric cryptosystem, Optics Communications 309, 2013, pp. 231–235, DOI: 10.1016/j.optcom.2013.06.036.
  • [27] QIN W., PENG X., Asymmetric cryptosystem based on phase truncated Fourier transforms, Optics Letters 35(2), 2010, pp. 118–120, DOI: 10.1364/OL.35.000118.
  • [28] HUANG Z. J., CHENG S., GONG L.H., ZHOU N.R., Nonlinear optical multi-image encryption scheme with two-dimensional linear canonical transform, Optics and Lasers in Engineering 124, 2020, article 105821, DOI: 10.1016/j.optlaseng.2019.105821.
  • [29] SINGH H., Devil’s vortex Fresnel lens phase masks on an asymmetric cryptosystem based on phase-truncated in gyrator wavelet transform domain, Optics and Lasers in Engineering 81, 2016, pp. 125–139, DOI: 10.1016/j.optlaseng.2016.01.014.
  • [30] RAJPUT S.K., NISHCHAL N.K., Asymmetric color cryptosystem using polarization selective diffractive optical element and structured phase mask, Applied Optics 51(22), 2012, pp. 5377–5786, DOI: 10.1364/AO.51.005377.
  • [31] KHURANA M., SINGH H., An asymmetric image encryption based on phase truncated hybrid transform, 3D Research 8, 2017, article 28, DOI: 10.1007/s13319-017-0137-8.
  • [32] GIRIJA R., SINGH H., Symmetric cryptosystem based on chaos structured phase masks and equal modulus decomposition using fractional Fourier transform, 3D Research 9, 2018, article 42, DOI: 10.1007/s13319-018-0192-9.
  • [33] YADAV P.L., SINGH H., Optical asymmetric cryptosystem centered on fractional Fourier domain using Hilbert phase mask, International Conference on Computing and Communication Technologies for Smart Nation (IC3TCN), IEEE, 2017, pp. 173–178, DOI: 10.1109/IC3TSN.2017.8284471.
  • [34] WANG Y., QUAN C., TAY C.J., New method of attack and security enhancement on an asymmetric cryptosystem based on equal modulus decomposition, Applied Optics 55(4), 2016, pp. 679–686, DOI: 10.1364/AO.55.000679.
  • [35] XU H., XU W., WANG S., WU S., Asymmetric optical cryptosystem based on modulus decomposition in Fresnel domain, Optics Communications 402, 2017, pp. 302–310, DOI: 10.1016/j.optcom.2017.05.035.
  • [36] XU H., XU W., WANG S., WU S., Phase-only asymmetric optical cryptosystem based on random modulus decomposition, Journal of Modern Optics 65(10), 2018, pp. 1245–1252, DOI: 10.1080/09500340.2018.1431314.
  • [37] RAKHEJA P., VIG R., SINGH P., An asymmetric watermarking scheme based on random decomposition in hybrid multi-resolution wavelet domain using 3D Lorenz chaotic system, Optik 198, 2019, article 163289, DOI: 10.1016/j.ijleo.2019.163289.
  • [38] CHEN J., ZHANG Y., LI J., ZHANG L.B., Security enhancement of double random phase encoding using rear-mounted phase masking, Optics and Lasers in Engineering 101, 2018, pp. 51–59, DOI: 10.1016/j.optlaseng.2017.09.019.
  • [39] CHEN L., ZHAO D., GE F., Image encryption based on singular value decomposition and Arnold transform in fractional domain, Optics Communications 291, 2013, pp. 98–103, DOI: 10.1016/j.optcom.2012.10.080.
  • [40] GIRIJA R., SINGH H., A cryptosystem based on deterministic phase masks and fractional Fourier transform deploying singular value decomposition, Optical and Quantum Electronics 50, 2018, article 210, DOI: 10.1007/s11082-018-1472-6.
  • [41] SINGH P., YADAV A.K., SINGH K., Phase image encryption in the fractional Hartley domain using Arnold transform and singular value decomposition, Optics and Lasers in Engineering 91, 2017, pp. 187–195, DOI: 10.1016/j.optlaseng.2016.11.022.
  • [42] ZHANG S.Q., KARIM M.A., Color image encryption using double random phase encoding, Microwave and Optical Technology Letters 21(5), 1999, pp. 318–323, DOI: 10.1002/(SICI)1098-2760(19990605)21:5<318::AID-MOP4>3.0.CO;2-A.
  • [43] JOSHI M., CHANDRASHAKHER, SINGH K., Color image encryption and decryption using fractional Fourier transform, Optics Communications 279(1), 2007, pp. 35–42, DOI: 10.1016/j.optcom.2007.07.012.
  • [44] JOSHI M., SINGH K., Simultaneous encryption of a color and a gray-scale image using byte-level encoding based on single-channel double random-phase encoding architecture in fractional Fourier domain, Optical Engineering 50(4), 2011, article 047007, DOI: 10.1117/1.3569688.
  • [45] SINGH H., Optical cryptosystems of color images using random phase masks in fractional wavelet transform domain, AIP Conference Proceedings 1728, 2016, article 020063, DOI: 10.1063/1.4946114.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-97b85220-eb42-4d1f-8808-916a2b17080f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.