PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A simplified approach to determining thermodynamic parameters and performance of a single-shaft gas turbine engine in off-design conditions

Identyfikatory
Warianty tytułu
PL
Uproszczony model w celu określenia parametrów termodynamicznych i osiągów jednowałowej turbiny w zmienionych warunkach parcy
Języki publikacji
EN
Abstrakty
EN
The present paper analyses power and efficiency changes of a single-shaft gas turbine, with a power output of about 14 MW, in off-design conditions. In the analyzed period the gas turbine operated at constant rotational speed while air inlet temperature varied. Due to measurement difficulties, not all parameters (temperature, pressure, mass flow rate) at the characteristic points of the gas turbine are measured. In the case of the gas turbine under consideration, the following quantities were measured: temperature and pressure at the compressor inlet, pressure downstream the compressor, fuel mass flow rate, pressure and temperature at the turbine outlet, and the gas turbine power output. Using the proposed model, the unmeasured quantities were determined, i.e. air temperature downstream the compressor, combustion gas pressure and temperature at the turbine inlet, and the mass flow rates of the air and combustion gas. After the unmeasured quantities were determined, the values of isentropic and polytropic efficiencies were calculated for the compressor and turbine. In order to analyze changes in the efficiency of the gas turbine system, the polytropic efficiency of the compressor and turbine was expressed as a function of an entropy increment. A linear relation of the polytropic efficiency as a function of entropy generation for the turbine and a non-linear one for the compressor were obtained. Approximately linear relations between the compressor and turbine isentropic and polytropic efficiencies were obtained. The power output of the turbine, and the power used to drive the compressor in the load range of 85 to 100% were calculated.
PL
W artykule dokonano analizy pracy turbiny gazowej jednowałowej o mocy około 14 MW w zmienionych warunkach pracy. W okresie objętym analizą turbina gazowa pracowała przy stałej prędkości obrotowej, zmianie podlegała temperatura powietrza na wlocie. Ze względu na trudności pomiarowe nie wszystkie parametry (temperatura, ciśnienie, strumień masy) w charakterystycznych punktach w turbinie gazowej są mierzone. Dla analizowanej turbiny gazowej były mierzone następujące wielkości: temperatura i ciśnienie na wlocie do sprężarki, ciśnienie za sprężarką, strumień masy paliwa, ciśnienie i temperatura na wylocie z turbiny i moc elektryczna turbiny gazowej. Na podstawie zaproponowanego modelu wyznaczono niemierzone wielkości tj.: temperaturę powietrza za sprężarką, ciśnienie i temperaturę spalin na wlocie do turbiny, strumień masy powietrza i spalin. Po wyznaczeniu niemierzonych wielkości wyliczono sprawności wewnętrzne i politropowe dla sprężarki i turbiny. Dla analizy zmian sprawności układu turbiny gazowej wyrażono sprawność politropową sprężarki i turbiny w funkcji przyrostu entropii. Otrzymano liniową zależność sprawności politropowej w funkcji generacji entropii dla turbiny i nieliniową dla sprężarki. Otrzymano w przybliżeniu liniowe relacje pomiędzy sprawnościami sprężarki i turbiny – dla sprawności wewnętrznej i politropowej. Obliczono moc generowaną w turbinie gazowej i moc pobieraną przez sprężarkę w zakresie zmian obciążenia od 85 do 100%.
Wydawca
Czasopismo
Rocznik
Tom
Strony
115--125
Opis fizyczny
Bibliogr. 31 poz., fig.
Twórcy
autor
  • Politechnika Warszawska Instytut Techniki Cieplnej, ul. Nowowiejska 21/25, 00-665 Warszawa
autor
  • Politechnika Warszawska Instytut Techniki Cieplnej, ul. Nowowiejska 21/25, 00-665 Warszawa
  • Politechnika Warszawska Instytut Techniki Cieplnej, ul. Nowowiejska 21/25, 00-665 Warszawa
Bibliografia
  • [1] Cohen C., Rogers G., Saravamutto H.: Gas Turbine Theory, 1996.
  • [2] Giampaolo T.: Gas Turbine Handbook: Principles and Practices, 2006.
  • [3] Walsh P., Fletcher P.: Gas Turbine Performance, 2004.
  • [4] Günyaz A.: A modeling and control approach to advanced nuclear power plants with gas turbines, Energy Conversion and Management 76 (2013) 899–909.
  • [5] Bettocchi R, Spina PR.: Dynamic modeling of single-shaft industrial gas turbine. ASME 96-GT-332; 1996.
  • [6] Chacartegui R., Sánchez D., Muñoz A., Sánchez T.: Real time simulation of medium size gas turbines, Energy Conversion and Management 52 (2011) 713–724.
  • [7] Kowalski M., Badyda K.: Performance analysis of a gas turbine air heat recovery unit using GateCycle software, Journal of Power Technologies 92 (1) (2012) 48–54.
  • [8] Rahman M. M., Ibrahim T. K., Abdalla N. A.: Thermodynamic performance analysis of gas-turbine power-plant, International Journal of the Physical Sciences Vol. 6(14), (2011), pp. 3539-3550
  • [9] Barinaadaa Thaddeus Lebele-Alawa, Vining Jo-Appah: Thermodynamic Performance Analysis of a Gas Turbine in an Equatorial Rain Forest Environment, Journal of Power and Energy Engineering, 2015, 3, 11-23
  • [10] Badyda K.: Characteristics of advanced gas turbine cycles (in Polish), Rynek Energii nr 6/2010.
  • [11] Ashley De Sa, Sarim Al Zubaidy: Gas turbine performance at varying ambient temperature, Applied Thermal Engineering 31 (2011) 2735–2739.
  • [12] Hasan Huseyin Erdem, Suleyman Hakan Sevilgen: Case study: Effect of ambient temperature on the electricity production and fuel consumption of a simple cycle gas turbine in Turkey, Applied Thermal Engineering 26 (2006) 320–326.
  • [13] Omar Othman Badran: Gas-turbine performance improvements, Applied Energy 64 (1999) 263–273.
  • [14] Farzaneh-Gord M., Deymi-Dashtebayaz M.: Effect of various inlet air cooling methods on gas turbine performance, Energy, 36, 1196-1205, 2011.
  • [15] El-Hadik A. A.: The impact of atmospheric conditions on gas turbine performance, J Eng Gas Turb Power, 112, 590-596, 1993.
  • [16] Ibrahim T. K., Rahman M. M., Abdalla A. N.: Improvement of gas turbine performance based on inlet air cooling systems: A technical review, International Journal of Physical Sciences, 6, 620-627, 2011.
  • [17] Caresana F., Pelagalli L., Comodi G., Renzi M.: Microturbogas cogeneration systems for distributed generation: Effects of ambient temperature on global performance and components' behavior, Applied Energy Volume 124, 1 July 2014, Pages 17-27
  • [18] Mehaboob Basha, S. M. Shaahid and Luai Al-Hadhrami: Impact of Fuels on Performance and Efficiency of Gas Turbine Power Plants, Energy Procedia 14 (2012) 558 – 565.
  • [19] Kotowicz J., Michalski S.: Influance of chosen working parameters of gas turbine unit used in air separation unit on efficiency of oxy-fuel supercritical power plant (in Polish), Rynek Energii 3(106)/2013.
  • [20] Kotowicz J., Job M.: Optimization of the steam part parameters in the GTCC unit with oxy-combustion and the carbon capture installation (in Polish), Rynek Energii 4(107)/2013.
  • [21] Gobran M.H.: Off-design performance of solar Centaur-40 gas turbine engine using Simulink, Ain Shams Engineering Journal (2013) 4, 285–298.
  • [22] Lazzaretto A, Tofflo A.: Analytical and neural network models for gas turbine design and off-design simulation. International Journal of Thermodynamics 2001;4(4):173–182.
  • [23] Jong Jun Lee, Do Won Kang, Tong Seop Kim: Development of a gas turbine performance analysis program and its application, Energy Volume 36, Issue 8, August 2011, Pages 5274-5285
  • [24] Song TW, Kim JH, Kim TS, Ro ST.: Performance prediction of axial flow compressors using stage characteristics and simultaneous calculation of interstage parameters. Proceedings of the IMechE, Part A: Journal of Power and Energy 2001;215:89-98.
  • [25] Kim JH, Song TW, Kim TS, Ro ST.: Model development and simulation of transient behavior of heavy duty gas turbines. Transactions of ASME Journal of Engineering for Gas Turbines and Power 2001;123(3):589-94.
  • [26] Kim JH, Song TW, Kim TS, Ro ST.: Dynamic simulation of full start-up procedure of heavy duty gas turbines. Transactions of ASME Journal of Engineering for Gas Turbines and Power 2002;124(3):510e6.
  • [27] Saadatmand M., Rocha G., Armstrong B.: The Titan 130 Gas Turbine Performance Uprate and Operating Experience, the 16th Symposium on Industrial Application of Gas Turbines (IAGT) Banff, Alberta, Canada - October 12-14, 2005.
  • [28] TITAN 130 Gas Turbine Generator Set, Industrial/Utility Grade.
  • [29] Industrial/Utility Grade, Industrial/Utility Grade.
  • [30] Traupel, W.: Thermische Turbomaschinen. Berlin, Springer 1966.
  • [31] Laskowski R., Smyk A., Lewandowski J.: An attempt to determine the compressor and turbine efficiency based on measurement data (in Polish), Rynek Energii 3/2014, 63-68.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-97b39329-fa10-4c32-80f8-ba5b121bb16b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.