Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The influence of the processing temperature of polylactide (PLA) on the structure geometry changing (SGC) and its functional properties were analyzed. The PLA samples subjected to testing were manufactured using incremental fused deposition modeling technology (FDM) with processing temperatures ranging from 180°C to 230°C. The topography of the PLA surfaces formed during heat dissipation and generated by the work table was analyzed. The roughness measurements were carried out using the profile method in accordance with PN ISO 3274: 2011. Registered profiles of the surfaces were analyzed numerically in fractal terms using the method of the S(Δx) structure function. The functional properties of the PLA surface were evaluated on the basis of Abbott-Firestone curves, according to PN EN ISO 13565–2: 1999.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
181--186
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr., wzory
Twórcy
autor
- University of Warmia and Mazury in Olsztyn, Faculty of Technical Sciences, 11 Oczapowskiego Str., 10-719 Olsztyn, Poland
autor
- University of Warmia and Mazury in Olsztyn, Faculty of Technical Sciences, 11 Oczapowskiego Str., 10-719 Olsztyn, Poland
autor
- University of Warmia and Mazury in Olsztyn, Faculty of Technical Sciences, 11 Oczapowskiego Str., 10-719 Olsztyn, Poland
autor
- University of Warmia and Mazury in Olsztyn, Faculty of Technical Sciences, 11 Oczapowskiego Str., 10-719 Olsztyn, Poland
autor
- University of Warmia and Mazury in Olsztyn, Faculty of Technical Sciences, 11 Oczapowskiego Str., 10-719 Olsztyn, Poland
Bibliografia
- [1] T.-C. Yang, Polymers-Basel 10 (9), 976 (2018), DOI: 10.3390/polym1009097.
- [2] M. Grasso, L. Azzouz, P. Ruiz-Hincapie, M. Zarrelli, G. Ren, Rapid Prototyping J. 24 (8), 1337-1346 (2018), DOI: 10.1108/RPJ-04-2017-0055.
- [3] M.A. Caminero, J.M. Chacón, E. García-Plaza, P.J. Núñez, J.M. Reverte, J.P. Becar, Polymers-Basel 11 (5), 799 (2019).
- [4] L. Xiao, B. Wang, G. Yang, M. Gauthier, Poly(Lactic Acid)-Based Biomaterials: Synthesis, Modification and Applications (2012), DOI: 10.5772/23927.
- [5] Z. Foltynowicz, P. Jakubiak, Polimery-w. 47, 769-774 (2002).
- [6] A. Kruk, A. Gadomska-Gajadhur, P. Ruśkowski A. Chwojnowski, L. Synoradzki, Polimery-w. 2, 118-126 (2017), DOI dx.doi.org/10.14314/polimery.2017.118.
- [7] R.M. Rasal, A.V. Janorkar, D.E. Hirt, Prog. Polym. Sci. 35, 338-356 (2010).
- [8] A. Duda, Przem. Chem. 82, 905-907 (2003).
- [9] A.C. Vieira, J.C. Vieira, R.M. Guedes, A.T. Marques, Mater. Sci. Forum. 636-637, 825-832 (2010), DOI: 10.4028/www.scientific.net/MSF.636-637.825.
- [10] A.C. Vieira, J.C. Vieira, R.M. Guedes, A.T. Marques, V. Tita, Mater. Sci. Forum. 730-732, 56-61 (2013), DOI: 10.4028/www.scientific.net/MSF.730-732.56.
- [11] M. Deng, J. Zhou, G. Chen, D. Burkley, Y. Xu, Biomaterials. 26, 4327-4336 (2005), DOI: 10.1016/j.biomaterials.2004.09.067.
- [12] L. Xiao, B. Wang, G. Yang, M. Gauthier, Poly(Lactic Acid)-Based Biomaterials: Synthesis, Modification and Applications in: D.N Ghista (Eds.), Biomedical Science, Engineering and Technology, InTech (2012), DOI: 10.5772/23927.
- [13] A. Duda, S. Penczek, Polimery-w. 48, 16-27 (2003).
- [14] P. Szymczyk, A. Pawlik, G. Ziółkowski, B. Dybała, E. Chlebus, Curr. Prob. Biomech. 7, 157-162 (2013).
- [15] C.M. Murphy, M.G. Haugh, F.J. O’Brien, Biomaterials. 31, 461-466 (2010).
- [16] E. Mazgajczyk, P. Szymczyk, E. Chlebus, Aktualne Problemy Biomechaniki 8, 109-114 (2014).
- [17] K. Terlega, M. Lachota, Pol. Merk. Lek. 33, 229 (2012).
- [18] P. Ruśkowski, A.A. Gadomska-Gajadhur, Tworzywa Sztuczne w Przemyśle 2, 32-35 (2017).
- [19] S. Guessasma, S. Belhabib, H Nouri, Polym. Test. 77, 105924 (2019), DOI: 10.1016/j.polymertesting.2019.105924.
- [20] E. García-Plaza, P.J. Núñez, M.A. Caminero, J.M. Chacón, Polymers-Basel 11 (10), 1581 (2019).
- [21] V.E. Kuznetsov, A.N. Solonin, A. Tavitov, O. Urzhumtsev, A. Vakulik, Rapid Prototyping Journal 26 (1), 107-121 (2020), DOI: 10.1108/RPJ-01-2019-0017.
- [22] B.B. Mandelbrot, Fractals Form, Chance and Dimension, W.H. Freeman & Company (1977).
- [23] M.V. Berry, J. Phys. A-Math. Gen. 12, 781-797 (1979).
- [24] R.S. Styles, T.R. Thomas, Wear. 42, 236-276 (1977).
- [25] E. J. Abbott, F.A. Firestone, J. Mech. Eng. 55, 569-572 (1933).
- [26] M. Bramowicz, L. Braic, F. Ak Azem, S. Kulesza, I. Birlik, A. Vladescu, Appl. Surf. Sci. 379, 338-346 (2016). doi.org/10.1016/j.apsusc.2016.04.077
- [27] Κ.J. Stout, Ρ.J. Sullivan, W.Ρ. Dong, E. Mainsah, Ν. Luo, The development of methods for the characterisation of roughness inthree dimensions, Brussels-Luxembourg and Authors, Commission of the European Communities (1993).
- [28] T. Peng, F. Yan, CIRP. 69, 106-111 (2018).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-97b36f1a-8ca7-497c-88a6-c3a04755d33b