PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

A side-hinged paddle wavemaker

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Theoretical investigations were conducted to study the generation of transient nonlinear water waves by a novel side-hinged paddle wavemaker. A 3D nonlinear solution was derived in a semi-analytical form by applying eigenfunction expansions and FFT. The solution was applied to study the features of nonlinear waves generated by a side-hinged paddle wavemaker. The results show that nonlinear terms in the free-surface boundary conditions and in the kinematic wavemaker boundary condition imply the modification of wave profiles so that wave troughs are flattered and crests are getting steeper and interaction effects between waves in a wave train increase. Moreover, these terms imply the modification of a wave spectrum. A train of originally very narrow-banded waves changes its one-peak spectrum to a multi-peak one. Theoretical results are in a fairly good agreement with experimental data. A reasonable agreement is observed between predicted and measured time series of free-surface elevations and the amplitudes of the corresponding Fourier series. The investigations show that a side-hinged paddle wavemaker is an attractive wave generation system. Simple and reliable boundary condition at the paddle enables verification of advanced 3D nonlinear models and accurate physical modeling of many phenomena where high accuracy of incoming wave properties are important.
Rocznik
Strony
213--242
Opis fizyczny
Bibliogr. 26 poz., rys., wykr.
Twórcy
autor
  • Department of Wave Mechanics and Structural Dynamics, Institute of Hydro-Engineering of Polish Academy of Sciences, 80-328 Gdansk
autor
  • Department of Wave Mechanics and Structural Dynamics, Institute of Hydro-Engineering of Polish Academy of Sciences, 80-328 Gdansk
Bibliografia
  • 1. T.H. Havelock, Forced surface-wave on water, Philosophical Magazine, 8, 51, 569–576, 1929, doi: 10.1080/14786441008564913.
  • 2. F. Biesel, F. Suquet, Laboratory Wave Generating Apparatus, Project Report No. 39, St. Anthony Falls Hydraulic Laboratory University of Minnesota, Minneapolis, Minnesota, USA, 1953.
  • 3. J.M. Hyun, Theory for hinged wavemakers of finite draft in water of constant depth, Journal of Hydronautics, 1, 10, 1976, doi: 10.2514/3.63046.
  • 4. R.G. Dean, R.T. Dalrymple, Water Wave Mechanics for Engineers and Scientists, Englewood Cliffs, Prentice-Hall, New York, USA, 1984.
  • 5. F. Ursell, R.G. Dean, Y.S. Yu, Forced small amplitude waves: a comparison of theory and experiment, Journal of Fluid Mechanics, 7, 33–52, 1960, doi: 10.1017/S0022112060000037.
  • 6. C.J. Galvin, Wave-height Prediction for Wave Generators in Shallow Water, Technical Memorandum No. 4, pp. 1–20, U.S. Army Corps of Engineers, Washington, DC, USA, 1964.
  • 7. T. Keating, N.B. Webber, The generation of periodic waves in a laboratory channel; a comparison between theory and experiment, Proceedings of the Institution of Civil Engineers, 63, 819–832, 1977, doi: 10.1680/iicep.1977.3078.
  • 8. N.H. Patel, P.A. Ionnaou, Comparative performance study of paddle and wedge-type wave generators, Journal Hydronautics 14, 5–9, 1980.
  • 9. Y. Goda, T. Kikuya, The generation of water waves with vertically oscillating flow at channel bottom, Rep. 9. Port and Harbour Technical Research Institute, Ministry of Transportation, Japan, 1964.
  • 10. R.H. Multer, C.J. Galvin, Secondary waves: periodic waves of non-permanent form, Abstract, EOS, 48, 1967.
  • 11. Y. Iwagaki, T. Sakai, Horizontal water particle velocity of finite amplitude waves, Coastal Engineering Proceedings, 1, 12, 19, 1970, doi: 10.9753/icce.v12.19.
  • 12. P. Fontanet, Theorie de la generation de la houle cylindrique par un batteur plan, La Houille Blanche, 16, 1, 3–31, 1961.
  • 13. O.S. Madsen, On the generation of long waves, Journal of Geophysical Research, 76, 8672–8683, 1971, doi: 10.1029/JC076i036p08672.
  • 14. R.T. Hudspeth, W. Sulisz, Stokes drift in two-dimensional wave flumes, Journal of Fluid Mechanics, 230, 209–229, 1993, doi: 10.1017/s0022112091000769.
  • 15. W. Sulisz, R.T. Hudspeth, Complete second-order solution for water waves generated in wave flumes, Journal of Fluids and Structures, 7, 3, 253–268, 1993, doi: 10.1006/jfls.1993.1016.
  • 16. W. Li, A.N. Williams, Second-order waves in a three-dimensional wave basin with perfectly reflecting sidewalls, Journal of Fluids and Structures, 14, 4, 575–592, 2000, doi: 10.1006/jfls.1999.0285.
  • 17. H.A. Schaffer, C.M. Steenberg, Second-order wavemaker theory for multidirectional waves, Ocean Engineering, 30, 10, 1203–1231, 2003, doi: 10.1016/S0029-8018(02)00100-2.
  • 18. S.A. Hughes, Physical models and laboratory techniques in coastal engineering, Word Scientific Publishing, Singapore, 981-02-1540-1, 1993, doi: 10.1142/2154.
  • 19. J.V. Wehausen, Surface Waves, in: Handbuch der Physik 9, Springer-Verlag, Berlin, pp. 446–778, 1960.
  • 20. B. Kinsman, Wind Waves, Prentice-Hall, Englewood Cliffs, New Jersey, 1965.
  • 21. W. Sulisz, M. Paprota, Modeling of the propagation of transient waves of moderate steepness, Applied Ocean Research, 26, 137–146, 2004, doi: 10.1016/j.apor.2005.03.001.
  • 22. W. Sulisz, M. Paprota, Generation and propagation of transient nonlinear waves in a wave flume, Coastal Engineering, 55, 4, 277–287, 2008, doi: 10.1016/j.coastaleng.2007.07.002.
  • 23. L.V. Kantorovich, V.I. Krylov, (translated by Curtis D. Benster), Approximate Methods of Higher Analysis, Groningen: Noordhoff, Libraries Australia, ID: 2549557, 1958.
  • 24. W.H. Press, B. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes, Cambridge University Press, Cambridge, 1988.
  • 25. W. Sulisz, Numerical modeling of wave absorbers for physical wave tanks, Journal of Waterway, Port, Coastal and Ocean Engineering, ASCE, 129, 1, 5–14, 2003, doi: 10.1061/(ASCE)0733-950X(2003)129:1(5).
  • 26. M. Paprota, W. Sulisz, Improving performance of a semi-analytical model for nonlinear water waves, Journal of Hydro-environment Research, 22, 38–49, 2019, doi: 10.1016/j.jher.2019.01.002.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-97ae5037-4def-4aef-bee7-a17f49bcb8b3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.