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A side-hinged paddle wavemaker
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Theoretical investigations were conducted to study the generation of tran-
sient nonlinear water waves by a novel side-hinged paddle wavemaker. A 3D nonlin-
ear solution was derived in a semi-analytical form by applying eigenfunction ex-
pansions and FFT. The solution was applied to study the features of nonlinear
waves generated by a side-hinged paddle wavemaker. The results show that non-
linear terms in the free-surface boundary conditions and in the kinematic wavemaker
boundary condition imply the modification of wave profiles so that wave troughs
are flattered and crests are getting steeper and interaction effects between waves
in a wave train increase. Moreover, these terms imply the modification of a wave
spectrum. A train of originally very narrow-banded waves changes its one-peak spec-
trum to a multi-peak one. Theoretical results are in a fairly good agreement with
experimental data. A reasonable agreement is observed between predicted and mea-
sured time series of free-surface elevations and the amplitudes of the corresponding
Fourier series. The investigations show that a side-hinged paddle wavemaker is an
attractive wave generation system. Simple and reliable boundary condition at the
paddle enables verification of advanced 3D nonlinear models and accurate physical
modeling of many phenomena where high accuracy of incoming wave properties are
important.
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1. Introduction

A natural consequence of the progress achieved in coastal and offshore
engineering is the expansion of hydraulic facilities which are indispensable to
conduct physical modeling of wave-induced phenomena or current-affected pro-
cesses. The development of modern laboratory equipment, in addition to the
modeling of physical processes, is also necessary to conduct fundamental re-
search and carry out verification of new analytical and numerical models. The
development of new models is a natural consequence of increasing needs and new
challenges facing coastal and offshore engineering. New laboratory facilities are
vital for the sustainable development of coastal and offshore areas.
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A linear wavemaker theory was first derived by Havelock [1] who applied
Fourier integrals to develop a model for forced surface gravity waves. An ex-
plicit linear solution was first derived by Biesel and Suquet [2]. They applied
eigenfunction expansions and derived a solution for the wave motions generated
by both a piston and a hinged wavemaker. The solution derived by Biesel and
Suquet [2] was extended by Hyun [3] to include hinged wavemakers of the
variable draft. The modeling of the generation of waves in wave basins is far
more complex than the modeling of the generation of waves in wave flumes. The
first available models were derived for an infinitely long wavemaker by applying
snake principles [4].

Laboratory experiments conducted byUrsell et al. [5],Galvin [6],Keating
and Webber [7], or Patel and Ionnaou [8] have shown that the linear wave-
maker theory provides satisfactory results for waves of very low steepness. When
waves of finite amplitudes are generated by a sinusoidally moving wavemaker, it
has been observed (Goda and Kikuya [9], Multer and Galvin [10], Iwagaki
and Sakai [11]) that the propagating waves comprise of a primary wave and
one or more secondary waves that are not predicted by the linear wavemaker
solutions, which stimulated the advancement of nonlinear wavemaker theories.

A second-order nonlinear wavemaker theory was first derived by Fontanet
[12] who developed a complete second-order solution in Lagrangian coordinates
for waves generated by a sinusoidally moving plane wavemaker. Madsen [13]
derived a solution in Eulerian coordinates for weakly nonlinear long waves gen-
erated by a sinusoidally moving piston wavemaker. Hudspeth and Sulisz [14],
and Sulisz and Hudspeth [15], developed a complete second-order solution in
Eulerian coordinates for a generic wavemaker. Their solution was later extended
to waves generated in basins of finite width by Li and Williams [16], and basins
of infinite width by Schaffer and Steenberg [17].

The process of the development of numerical models requires an appropri-
ate verification procedure. Developed numerical models, in particular nonlinear
wave models, must be verified by conducting comparisons of theoretical results
with data obtained in laboratory experiments. Accurate verification of three-
dimensional nonlinear wave models is not straightforward. The problem is that
laboratory experiments, including experiments conducted in wave flumes or wave
basins, have various limitations and require detailed knowledge on a generation
system, limitations of applied equipment, potential side effects, etc. As a matter
of fact, laboratory experiments have serious limitations, and data collected in
wave flumes or wave basins are affected by wavemaker features, wave generation
system, wave reflection and re-reflection, return currents, etc. (Hughes [18]).
In many cases, especially cases related to the generation of waves in wave basins,
discontinuities in wave generating system effect the formation and evolution of
ripples on the free-surface and cause that it is difficult to generate good-quality
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and undisturbed propagating waves. As a consequence, it is difficult to evalu-
ate and eventually separate side effects, and to conduct precise experimental
verifications of advanced theoretical models for which details of incoming wave
properties are of fundamental importance. As a result, specific features of data
collected in laboratory experiments as well as some side effects have to be taken
into consideration in planning experiments and in the analysis of data collected
during measurements.

An interesting and attractive alternative for the generation of three-dimen-
sional nonlinear waves is a side-hinged planar wavemaker constructed in the wave
flume of the Institute of Hydro-Engineering, the Polish Academy of Sciences,
Gdańsk. Investigations conducted for a wide range of parameters and analy-
ses of results confirm that the new generator is an attractive wave generation
system. The side-hinged planar wavemaker, in addition to the precise verifica-
tion of advanced three-dimensional nonlinear wave models, can be applied to
conduct accurate investigations on nonlinear wave propagations in navigational
channels, approaching harbor channels and basins, the interactions of nonlin-
ear waves and cross-waves with structures, nonlinear cross-wave loads on ships
including loads at berth, formation and development of cross waves, formation
of wave resonance and seiches, sloshing phenomenon, selected slamming effects,
etc. The wide range of the applicability of a side-hinged paddle wavemaker, easy
access to this type of laboratory facilities, very low costs of laboratory experi-
ments, and the fact that the wavemaker proposed in our study may be installed
basically in all laboratories by changing the hinge of a flap, motivated theoretical
investigations on waves generated by this type of a wavemaker. This is because
a theoretical model provides insight into the effects of the free-surface bound-
ary conditions and the kinematic wavemaker boundary condition on nonlinear
waves and the physics of mechanically generated waves. This problem is vital for
the interpretation and understanding of mechanically generated waves which are
particular-type waves subject to nonlinear effects arising from the free-surface
boundary conditions and the kinematic wavemaker boundary condition.

In this paper, theoretical and experimental investigations are conducted to
study the generation of transient nonlinear water waves by a side-hinged paddle
wavemaker. The boundary-value problem is formulated to describe the gener-
ation of nonlinear waves by a side-hinged flap wavemaker and a solution was
achieved by applying a semi-analytical method. Then, theoretical investiga-
tions are conducted with emphasis on the features of nonlinear waves gener-
ated by a side-hinged wavemaker including the formation and development of
cross waves. Next, the laboratory experiments are conducted and theoretical
results are compared with experimental data for a wide range of wave param-
eters. Finally, conclusions arising from the analysis of theoretical results and
experimental data are specified.
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2. Theoretical formulation

2.1. Statement of the problem

We consider the generation of nonlinear water waves by a side-hinged paddle
wavemaker in a wave basin. A right-hand Cartesian coordinate system was se-
lected such that the xy plane is horizontal and coincides with the undisturbed
free surface and z points vertically upwards (Fig. 1). It is assumed that:

a) the fluid is inviscid and incompressible,
b) the fluid motion is irrotational,
c) the bottom and the vertical-side walls are impervious.

(a)

(b)
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h
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0

Fig. 1. Definitions sketch and coordinate systems; (a) side view and (b) top view.

In accordance with the assumptions, the velocity vector, V (x, y, z, t), may
be computed from a velocity potential Φ(x, y, z, t):

(2.1) V = ∇Φ(x, y, z, t),

where ∇(·) is the three-dimensional vector differential operator.
The fluid motion is governed by the continuity equation

(2.2a)
∂2Φ

∂x2
+
∂2Φ

∂y2
+
∂2Φ

∂z2
= 0

and the Bernoulli equation

(2.2b)
∂Φ

∂t
+

1

ρ
P + gz +

1

2

((
∂Φ

∂x

)2

+

(
∂Φ

∂y

)2

+

(
∂Φ

∂z

)2)
= 0,

where ρ is the fluid mass density, P is the dynamic pressure, and g is the accel-
eration due to gravity.
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The velocity potential, Φ(x, y, z, t), satisfies the Laplace equation:

(2.3a)
∂2Φ

∂x2
+
∂2Φ

∂y2
+
∂2Φ

∂z2
= 0, x ≥ χ(y, z, t), −h ≤ z ≤ η(x, y, t)

with the kinematic boundary condition on the free surface:

(2.3b)
∂η

∂t
+
∂Φ

∂x

∂η

∂x
+
∂Φ

∂y

∂η

∂y
− ∂Φ

∂z
= 0, z = η(x, y, t), x ≥ χ(y, z, t),

the dynamic boundary condition on the free surface:

(2.3c)
∂Φ
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+ gη +

1
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((
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)2
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z = η(x, y, t), x ≥ χ(y, z, t),

the kinematic boundary condition on the wavemaker

(2.3d)
∂χ

∂t
+
∂Φ

∂y

∂χ

∂y
+
∂Φ

∂z

∂χ

∂z
− ∂Φ

∂x
= 0, x = χ(y, z, t), −h ≤ z ≤ η(x, y, t),

the kinematic boundary condition at the walls:

(2.3e) Φy = 0, y = 0, c x ≥ χ(y, z, t),

and the kinematic boundary condition at the bottom of the basin:

(2.3f) Φz = 0, z = −h, x ≥ χ(y, z, t),

where h is the water depth, c is the basin width, and χ is the wavemaker dis-
placement. In addition, the velocity potential must satisfy a boundary condition
at infinity and initial conditions (Wehausen [19], Kinsmann [20]).

A solution may be achieved by expanding the kinematic free-surface bound-
ary condition (2.3b), the dynamic free-surface boundary condition (2.3c), and
the kinematic wavemaker boundary condition (2.3d) in a Taylor series about
a mean position,

∞∑
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z = 0, x ≥ 0,
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∞∑
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By applying (2.4) to (2.3) and collecting terms up to the second order in a wave
amplitude one obtains the following boundary-value problem:

∂2Φ

∂x2
+
∂2Φ

∂y2
+
∂2Φ

∂z2
= 0, x ≥ 0,−h ≤ z ≤ 0,(2.5a)
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z = 0, x ≥ 0,
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∂Φ

∂z
= 0, z = −h, x ≥ 0.(2.5e)

Moreover, the velocity potential must satisfy a boundary condition at infinity
and initial conditions.

The boundary-value problem describes the generation of nonlinear waves in
a basin by a side-hinged paddle wavemaker. A solution must properly describe
nonlinear effects arising from the free-surface boundary conditions and the kine-
matic wavemaker boundary condition. Widely-applied weakly nonlinear wave
models do not satisfy the boundary-value problem, (2.5a–e). This is because
classical nonlinear wave models do not satisfy the kinematic wavemaker bound-
ary condition, (2.5d). Mechanically generated waves are specific-type waves and
their description require new approaches and novel solution techniques.

2.2. Solution

The boundary-value problem, (2.5), is solved by applying eigenfunction ex-
pansions and a time-stepping procedure supported by FFT. This method has
been shown to be an efficient technique in the modeling of the propagation and
transformation of nonlinear waves (Sulisz and Paprota [21, 22]). The appli-
cation of the eigenfunction expansion method and FFT is very attractive from
a computational point of view.

It is customary in the boundary-value problems with inhomogeneous bound-
ary conditions to decompose the solution into complementary components. Ac-
cordingly, the velocity potential, Φ, may be expressed as a linear combination of
two velocity potentials given by:

(2.6a) Φ = Φf + Φw,
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where

Φf (x, y, z, t) =
∑
m=0

∑
n=0

Amn
coshλmn(z + h)

coshλmnh
cosλm0x cosλ0ny,(2.6b)

Φw(x, y, z, t) = B00((x− b)2 − (z + h)2)(2.6c)

+
∑
m=0

∑
n=0

(1− δ00mn)Bmn
coshµmn(x− b)

coshµmnb
cosµ0ny cosµm0(z + h),

η(x, y, t) =
∑
m=0

∑
n=0

amn cosλm0x cosλ0ny(2.6d)

and where the eigenvalues can be determined from

λmn = π
√
m2/b2 + n2/c2,(2.6e)

µmn = π
√
m2/h2 + n2/c2,(2.6f)

in which Amn, Bmn, amn are unknown coefficients, c is a basin width, and b is
the length of the basin that is assumed to be sufficiently large to prevent wave
reflection.

The unknown coefficients of the solution may be determined from the bound-
ary conditions by applying the Fourier method (Kantorovich andKrilov [23])
and theAdams–Bashford–Moulton predictor-correctormethod (Press et al. [24]).
The applied solution technique enables the prediction of the free-surface eleva-
tion, η, and the velocity potential, Φ, from their time derivatives. Accordingly,
the coefficients amn and Amn are determined by applying in an iterative proce-
dure (2.5b) and (2.5c) and the Adams–Bashford predictor

(2.7a) fn+1 = fn +
∆t

24
(55f ′n − 59f ′n−1 + 37f ′n−2 − 9f ′n−3)

combined with the Adams–Moulton corrector

(2.7b) fn+1 = fn +
∆t

24
(9f ′n+1 + 19f ′n − 5f ′n−1 + f ′n−2),

where f ′ is the time derivative of f .
The coefficients Bmn, m = 0, 1, 2, . . . , n = 0, 1, 2, . . . are determined by

applying (2.5d) and FFT.
The derived solution describes the generation of nonlinear progressive waves

and cross waves in the time domain. The evanescent modes play an important
role in the descriptions and modeling of wavemaker problems. The evanescent
modes are explicitly present in frequency-domain solutions and contribute to
a far-field solution. Of course, the evanescent modes are also present in time-
domain solutions, however, in a non-explicit form. They are incorporated in the
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time-domain terms of a final solution. The solution is very efficient and may be
applied to predict wave generation and propagation even in large wave basins.
The applicability range of the solution may further be increased by the imple-
mentation of wave absorbers in a wave basin (Sulisz [25]). The introduction of
an absorber also enables the modeling of partial wave reflection that is observed
in real wave basins.

3. Theoretical results

The derived solution was applied to analyze the generation of transient non-
linear water waves by a side-hinged paddle wavemaker. The analysis is conducted
for the time history of the wavemaker displacement presented for a basic amplifi-
cation factor and x = 0, y = c in Fig. 2. The wavemaker generation program com-
prises four basic wave periods corresponding to the ratio of the wavelength, L,
to the water depth, h, equal to L/h = 4, 6, 8, and 12. For each basic wave period,
the wavemaker generates wave trains corresponding to low, moderate, and steep
waves. This is included in the generation program to investigate nonlinear ef-
fects arising from the generation and propagation of waves in a wave basin with
a side-hinged paddle wavemaker. The calculations are conducted for the basin
of width c/h = 1.5 and the results are presented for x/h = 5, y/h = 0.75.
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Fig. 2. Time history of the wavemaker displacement.
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The results are analyzed with the emphasis on the effect of wave frequencies
and wave steepness on the generation and propagation of a wave train in a wave
basin with a side-hinged paddle wavemaker. The wave profile, the wave energy
spectrum, and the evolution of wave profile arising from the generation, prop-
agation, and transformation of nonlinear wave components in wave trains are
analyzed. The results obtained by applying the nonlinear model are compared
with the outcome of the analytical solution derived for the generation of linear
waves by a side-hinged paddle wavemaker. The derived analytical solution and
the comparisons conducted with the results obtained by applying the nonlinear
model help to evaluate the effects of nonlinear terms included in boundary condi-
tions on wave profile, wave spectrum, and the evolution of wave profile and wave
spectrum due to the generation, propagation, and transformation of nonlinear
waves in a wave basin with a side-hinged paddle wavemaker.

First, the derived model is applied to predict the generation and propagation
of waves of small amplitudes. The application of the model to waves of low
steepness enables us to verify the numerical scheme because the outcome of
the model should be basically the same as the results provided by the analytical
solution derived within the frame of linear wave theory. The results corresponding
to waves of low steepness are shown in Fig. 3. The plots in Fig. 3 also show the
outcome of the Fourier analysis that was applied to obtain an amplitude wave
spectrum and information on wave frequency components. The results predicted
by the derived model are in good agreement with the analytical solution. The
discrepancies between the outcome of the linear and nonlinear models increase
with increasing wavelength. In fact, increasing discrepancies between linear and
nonlinear models with increasing wavelength is an expected result related to
general features of water waves.

A real challenge for the modeling of the generation of water waves in wave
flumes and wave basins is the prediction of waves for large wavemaker displace-
ments. The advantages of the derived nonlinear model can be demonstrated by
applying it to waves of higher steepness for which a linear wave theory cannot
provide satisfactory results. The outcomes of calculations conducted for waves of
moderate steepness and steep waves are presented in Figs. 4 and 5. The results
for waves of moderate steepness and steep waves correspond to the time history
of the wavemaker displacement presented in Fig. 2 multiplied by an amplifica-
tion factor two and four, respectively. The plots in Figs. 4 and 5 also show the
time series of the free-surface elevation predicted by applying an analytical so-
lution derived within the frame of linear wave theory. Moreover, the plots show
the outcome of the Fourier analysis that was applied to obtain amplitude wave
spectrums and information on wave frequency components.

The results presented in Figs. 4 and 5 indicate a need to apply nonlinear ap-
proaches in the modeling of the generation and propagation of waves in a wave
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Fig. 3. Free-surface elevation and amplitudes of Fourier series for waves of low steepness,
— nonlinear theory, - - - linear theory.
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Fig. 4. Free-surface elevation and amplitudes of Fourier series for waves of moderate
steepness, — nonlinear theory, - - - linear theory.
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Fig. 5. Free-surface elevation and amplitudes of Fourier series for steep waves, — nonlinear
theory, - - - linear theory.
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basin with a side-hinged paddle wavemaker. The application of the nonlinear
model has a significant effect on a wave profile. For waves of low steepness, the
nonlinear wave effects and effects associated with the interaction of water waves
in a wave train are of secondary importance and the linear wavemaker solution
may be applied to predict water waves generated in a wave basin. For the larger
amplitudes of the wavemaker oscillations, generated waves are higher, which im-
plies stronger nonlinear wave effects and the interactions between waves in a wave
train are no longer negligible. This also causes the modification of a wave profile
– wave troughs are flattered and crests are getting steeper. The discrepancies
between a wave profile predicted by applying the linear and nonlinear mod-
els increase with increasing wavelength and become significant for long waves
which profile become more and more cnoidal with increasing wavelength. The
results presented in Figs. 4 and 5 also show that the application of the nonlinear
model has a significant effect on the shape of a wave spectrum for moderate and
large wavemaker displacements. A train of originally very narrow-banded waves
changes its one-peak spectrum to a multi-peak one when a wavemaker amplitude
increases.

The nonlinear waves imply changes of wave profiles and wave spectrum, and
lead to wave instabilities in intermediate and deep waters. Mechanically gener-
ated waves are specific-type waves subject to nonlinear effects arising from two
sources. Namely, these waves are subject to nonlinear effects arising from the
free-surface boundary conditions and the kinematic wavemaker boundary con-
dition. An insight into the contribution of the nonlinear terms present in the
boundary conditions illustrates the results in Fig. 6. The plots in Fig. 6 illus-
trate the importance of nonlinear terms in the free-surface boundary conditions
and in the kinematic wavemaker boundary condition on the final solution. The
results show that the contributions of nonlinear terms present in the kinematic
wavemaker boundary condition are of secondary importance for a final solution.
The low effects of the nonlinear terms in the kinematic wavemaker boundary
condition on a solution are the advantage of a side-hinged paddle wavemaker
because nonlinear wave effects disturb physical modeling of numerous processes
including wave-induced transport, sediment transport, etc. Often, nonlinear wave
effects may drastically disturb or even exclude physical modeling conducted in
wave flumes or wave basins by altering or completely deforming a designed wave
spectrum.

There is an advantage of including the limited number of waves in a wave
train for potential readers and users, who may easily verify their analytical and
numerical solutions by applying presented input data and results, because it is
easy to prepare input files from presented results by digitizing plots and run de-
rived models on personal computers. The presentation of the limited number of
waves in the wave train is a recognized standard (Sulisz and Paprota [21, 22];
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Fig. 6a. Free-surface elevation and amplitudes of Fourier series for steep waves, — nonlinear
wavemaker and linear free-surface boundary conditions, - - - linear theory.
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Paprota and Sulisz [26]). However, for completes, Fig. 7 shows the results ob-
tained for a large number of waves in a wave train at different locations of a long
wave basin. The analysis of the results shows that the outcome of the model and
conclusions are the same as for the limited number of waves in a wave train.

Additional calculations and analysis show that widely-applied weakly nonlin-
ear wavemaker models cannot properly describe the wave profile and wave spec-
trum when wave steepness exceeds low wave steepness limits. The analysis shows
that for waves of moderate steepness and relatively steep waves the discrepancies
between results obtained by the application of weakly nonlinear wavemaker mod-
els and nonlinear approaches are becoming significant especially in shallow and
deep waters. This is because the weakly nonlinear wavemaker models are based
on a perturbation theory that has a number of limitations. As a consequence, the
free-surface boundary conditions, the kinematic wavemaker boundary condition,
the nonlinear interactions of wave components in wave trains, and the evolution
of wave energy spectrum are not described with sufficient accuracies. The pre-
diction of the generation and propagation of waves of moderate steepness and
steep waves requires the application of nonlinear wavemaker models.

4. Experimental verification

4.1. Laboratory experiments

Laboratory experiments were conducted in the wave flume at the Institute of
Hydro-Engineering, the Polish Academy of Sciences, Gdańsk. The wave flume is
64 m long, 0.6 m wide and 1.4m deep and it is equipped with a programmable
side-hinged paddle wavemaker. Two porous wave absorbers are supplied at both
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Fig. 8. The wave flume; (a) the side view and (b) the top view.
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ends of the wave flume (Fig. 8). The experiments were conducted at the water
depth h = 0.4m. The wavemaker generated wave trains of dominant frequencies
corresponding to the wave lengths of 4.0m, 2.4m, and 1.2m. To minimize side ef-
fects arising from the development of noise in the wave basin, the wave-generator
motion was started and terminated by applying a pre-tested ramp function. Ex-
perimental verifications were conducted for free-surface elevations, η(x, y, t).

The free-surface elevations were recorded by a system of resistance-type wave
gauges. The system consisted of seven wave gauges G1: x = 2.0m, y = 0.3m;
G2: x = 2.0m, y = 0.58m; G3: x = 2.2m, y = 0.3m; G4: x = 2.2m, y = 0.58m;
G5: x = 2.4m, y = 0.3m; G6: x = 2.4m, y = 0.58m; G7: x = 2.2m, y = 0.45m.
The free-surface elevation was sampled 200 times per second.

4.2. Experimental and theoretical comparisons

Theoretical results of the free-surface elevations calculated by applying the
derived three-dimensional nonlinear model were compared with the time series
of the free-surface elevations measured by wave gauges. The comparisons are
presented in Figs. 9–12. The free-surface elevation was calculated by applying
the wavemaker displacement recorded at y/h = 1.4 and the amplitudes of wave
components in a wave train were determined by the standard Fourier analysis.
The calculations were conducted at the positions of wave gauges considered in
laboratory experiments. For completes, additional comparisons of the theoretical
results with experimental data are presented for a long wave train. The plots in
Figs. 9–12 show a fairly good agreement between theoretical results predicted
by the nonlinear model and the experimental data. A reasonable agreement is
observed between predicted and measured time series of the free-surface eleva-
tions and the amplitudes of the corresponding Fourier series. The plots also show
that wave phases predicted by applying the theoretical models are in reasonable
agreement with experimental data. Moreover, the model predicts fairly well the
multi-peak spectrum characteristic for nonlinear wave components.

The comparisons of theoretical results with experimental data also show that
the derived model predicts the formation and development of cross-waves with
reasonable accuracy. A side-hinged paddle wavemaker generates a plane wave
and cross waves. For relatively long waves generated in a wave basin cross waves
decay with increasing the distance from the wavemaker and changes of the wave
amplitude across a basin are low. However, for shorter waves, at least one cross-
wave mode does not decay with increasing the distance from the wavemaker
and a wave amplitude changes its magnitude across the wave basin. The rate
of the contribution of cross waves to the free-surface oscillations may be easily
controlled by increasing or decreasing water depth in a wave basin, which is the
significant advantage of a side-hinged paddle wavemaker concept.
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The discrepancies observed between theoretical results and experimental data
are probably due to inaccuracies in a mechanical system as well as a leakage and
a wave damping around a moving wavemaker paddle that were not modeled
with sufficient accuracy. Inaccuracy in a mechanical generation system including
a leakage and a wave damping around a wavemaker paddle, become important
especially when cross-wave frequency is very close to the basin resonance fre-
quency, as in the case of L/h = 3. The modelling of the generation of resonance
in the time domain is very sensitive to initial conditions. Small inaccuracy in
the mechanical generation system leads to discrepancies between predicted and
recorded free surface elevations, especially in the second stage of wave motion
due to the accumulation and amplification in time of a small error arising from
the inaccuracy in the mechanical generation system.

The developed model and methodology are very attractive from a theoret-
ical and practical point of view and can be applied to verify advanced three-
dimensional nonlinear wave models as well as to conduct accurate investiga-
tions on nonlinear wave propagation and transformation in channels and har-
bour basins, navigational channels, interactions of nonlinear cross-waves with
structures, nonlinear cross-wave loads on ships and maritime structures, forma-
tion and development of cross waves, formation of wave resonance, creation and
transformation of seiches, development of sloshing phenomena, etc.

5. Conclusions

Theoretical investigations were conducted to study the generation of tran-
sient nonlinear water waves by a novel side-hinged paddle wavemaker. A semi-
analytical nonlinear solution is achieved by applying eigenfunction expansions
and FFT. The derived solution is applied to study the features of nonlinear
waves generated by a side-hinged paddle wavemaker including the effect of the
frequency and the magnitude of wavemaker oscillations on the generation and
propagation of nonlinear waves as well as the formation and development of cross
waves.

The results show that for waves of very low steepness the nonlinear terms
in the free-surface boundary conditions and the kinematic wavemaker boundary
condition are of secondary importance, so the contribution of nonlinear wave
effects may be neglected and a linear wave theory may be applied to predict the
generation of waves by a side-hinged paddle wavemaker. For larger amplitudes
of wavemaker displacements, generated waves are higher and the contribution
of nonlinear wave effects cannot be neglected. The nonlinear effects imply the
modification of wave profiles so that wave troughs are flattered and crests are
getting steeper and cause that the interactions between waves in a wave train are
becoming more and more important, and are no longer negligible. The analysis
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shows that the discrepancies between wave profiles predicted by applying the
linear and nonlinear models increase with increasing wavelength and become
significant for long waves which profiles become more and more cnoidal. The
results also show that the application of the nonlinear model has a significant
effect on the shape of a wave spectrum. The results show that a train of originally
very narrow-banded waves changes its one-peak spectrum to a multi-peak one
when a wavemaker displacement increases.

The derived model provides insight into the effects of nonlinear terms in
the free-surface boundary conditions and in the kinematic wavemaker bound-
ary condition on a final solution. This problem is of significant importance for
the interpretation and understanding of nonlinear wave phenomena implied by
mechanically generated waves which are specific-type waves subject to non-
linear effects arising from the free-surface boundary conditions and the kine-
matic wavemaker boundary condition. The analysis shows that the contribu-
tions of nonlinear terms present in the kinematic wavemaker boundary condi-
tion are of secondary importance for a final solution. The low effects of the
nonlinear terms in the kinematic wavemaker boundary condition on a final
solution are the advantage of a side-hinged paddle wavemaker because non-
linear wave effects disturb physical modeling of numerous processes including
wave-induced transport, sediment transport, etc. Often, nonlinear wave effects
may drastically disturb or even exclude physical modeling conducted in wave
flumes or wave basins by altering or completely deforming a designed wave spec-
trum.

The analysis shows that there is a fairly good agreement between theoretical
results predicted by the derived nonlinear model and the experimental data.
A reasonable agreement is observed between predicted and measured time series
of the free-surface elevations and the amplitudes of the corresponding Fourier
series. The plots also show that wave phases predicted by applying the theoretical
model are in reasonable agreement with experimental data. The model predicts
fairly well multi-peak spectrums characteristic for nonlinear waves as well as the
formation and development of cross-waves. The discrepancies observed between
theoretical results and experimental data are probably due to inaccuracy in
a mechanical system as well as leakage and wave damping around a wavemaker
flap that were not modeled with sufficient accuracy.

The investigations show that a side-hinged paddle wavemaker is an attrac-
tive wave generation system. The simple and reliable boundary condition at the
paddle enables verification of advanced three-dimensional nonlinear models and
accurate physical modeling of many phenomena where high accuracy or details
of incoming wave properties are important. The wavemaker proposed in our
study may be installed basically in all laboratories by changing the hinge of
a flap.



A side-hinged paddle wavemaker 241

Acknowledgements

Financial support for this study was partially provided by the MuWin
project, MarTERA4/1/9/MuWin/2023. The financial support is gratefully ac-
knowledged.

References

1. T.H. Havelock, Forced surface-wave on water, Philosophical Magazine, 8, 51, 569–576,
1929, doi: 10.1080/14786441008564913.

2. F. Biesel, F. Suquet, Laboratory Wave Generating Apparatus, Project Report No. 39,
St. Anthony Falls Hydraulic Laboratory University of Minnesota, Minneapolis, Minnesota,
USA, 1953.

3. J.M. Hyun, Theory for hinged wavemakers of finite draft in water of constant depth,
Journal of Hydronautics, 1, 10, 1976, doi: 10.2514/3.63046.

4. R.G. Dean, R.T. Dalrymple, Water Wave Mechanics for Engineers and Scientists,
Englewood Cliffs, Prentice-Hall, New York, USA, 1984.

5. F. Ursell, R.G. Dean, Y.S. Yu, Forced small amplitude waves: a comparison of
theory and experiment, Journal of Fluid Mechanics, 7, 33–52, 1960, doi: 10.1017/
S0022112060000037.

6. C.J. Galvin, Wave-height Prediction for Wave Generators in Shallow Water, Technical
Memorandum No. 4, pp. 1–20, U.S. Army Corps of Engineers, Washington, DC, USA,
1964.

7. T. Keating, N.B. Webber, The generation of periodic waves in a laboratory chan-
nel; a comparison between theory and experiment, Proceedings of the Institution of Civil
Engineers, 63, 819–832, 1977, doi: 10.1680/iicep.1977.3078.

8. N.H. Patel, P.A. Ionnaou, Comparative performance study of paddle and wedge-type
wave generators, Journal Hydronautics 14, 5–9, 1980.

9. Y. Goda, T. Kikuya, The generation of water waves with vertically oscillating flow
at channel bottom, Rep. 9. Port and Harbour Technical Research Institute, Ministry of
Transportation, Japan, 1964.

10. R.H. Multer, C.J. Galvin, Secondary waves: periodic waves of non-permanent form,
Abstract, EOS, 48, 1967.

11. Y. Iwagaki, T. Sakai, Horizontal water particle velocity of finite amplitude waves,
Coastal Engineering Proceedings, 1, 12, 19, 1970, doi: 10.9753/icce.v12.19.

12. P. Fontanet, Theorie de la generation de la houle cylindrique par un batteur plan, La
Houille Blanche, 16, 1, 3–31, 1961.

13. O.S. Madsen, On the generation of long waves, Journal of Geophysical Research, 76,
8672–8683, 1971, doi: 10.1029/JC076i036p08672.

14. R.T. Hudspeth, W. Sulisz, Stokes drift in two-dimensional wave flumes, Journal of
Fluid Mechanics, 230, 209–229, 1993, doi: 10.1017/s0022112091000769.

https://doi.org/10.1080/14786441008564913
https://doi.org/10.2514/3.63046
https://10.1017/S0022112060000037
https://10.1017/S0022112060000037
https://doi.org/10.1680/iicep.1977.3078
https://doi.org/10.9753/icce.v12.19
https://doi.org/10.1029/JC076i036p08672
https://doi.org/10.1017/s0022112091000769


242 W. Sulisz, A. Zdolska

15. W. Sulisz, R.T. Hudspeth, Complete second-order solution for water waves gen-
erated in wave flumes, Journal of Fluids and Structures, 7, 3, 253–268, 1993, doi:
10.1006/jfls.1993.1016.

16. W. Li, A.N. Williams, Second-order waves in a three-dimensional wave basin with per-
fectly reflecting sidewalls, Journal of Fluids and Structures, 14, 4, 575–592, 2000, doi:
10.1006/jfls.1999.0285.

17. H.A. Schaffer, C.M. Steenberg, Second-order wavemaker theory for multidirectional
waves, Ocean Engineering, 30, 10, 1203–1231, 2003, doi: 10.1016/S0029-8018(02)00100-2.

18. S.A. Hughes, Physical models and laboratory techniques in coastal engineering, Word
Scientific Publishing, Singapore, 981-02-1540-1, 1993, doi: 10.1142/2154.

19. J.V. Wehausen, Surface Waves, in: Handbuch der Physik 9, Springer-Verlag, Berlin,
pp. 446–778, 1960.

20. B. Kinsman, Wind Waves, Prentice-Hall, Englewood Cliffs, New Jersey, 1965.

21. W. Sulisz, M. Paprota, Modeling of the propagation of transient waves of moderate
steepness, Applied Ocean Research, 26, 137–146, 2004, doi: 10.1016/j.apor.2005.03.001.

22. W. Sulisz, M. Paprota, Generation and propagation of transient nonlinear waves
in a wave flume, Coastal Engineering, 55, 4, 277–287, 2008, doi: 10.1016/j.coastaleng.
2007.07.002.

23. L.V. Kantorovich, V.I. Krylov, (translated by Curtis D. Benster), Approximate
Methods of Higher Analysis, Groningen: Noordhoff, Libraries Australia, ID: 2549557, 1958.

24. W.H. Press, B. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes,
Cambridge University Press, Cambridge, 1988.

25. W. Sulisz, Numerical modeling of wave absorbers for physical wave tanks, Journal
of Waterway, Port, Coastal and Ocean Engineering, ASCE, 129, 1, 5–14, 2003, doi:
10.1061/(ASCE)0733-950X(2003)129:1(5).

26. M. Paprota, W. Sulisz, Improving performance of a semi-analytical model for non-
linear water waves, Journal of Hydro-environment Research, 22, 38–49, 2019, doi:
10.1016/j.jher.2019.01.002.

Received September 7, 2022; revised version March 8, 2023.
Published online May 5, 2023.

https://doi.org/10.1006/jfls.1993.1016
https://doi.org/10.1006/jfls.1999.0285
https://doi.org/10.1016/S0029-8018(02)00100-2
https://doi.org/10.1142/2154
https://doi.org/10.1016/j.apor.2005.03.001
https://10.1016/j.coastaleng.2007.07.002
https://10.1016/j.coastaleng.2007.07.002
https://doi.org/10.1061/(ASCE)0733-950X(2003)129:1(5)
https://doi.org/10.1016/j.jher.2019.01.002

