PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessing the maximum limit of SAR-OSL dating using quartz of different grain sizes

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
SAR-OSL dating studies of Romanian, Serbian and Chinese loess using fine and coarse quartz have previously resulted in a series of controversial issues. We extend here the investigations using fine (4–11 μm) and different coarse quartz (>63 μm) grains extracted from aeolianites from a site on Eivissa Island (southwestern Mediterranean). Aeolianites were chosen since they contain quartz from a different geological context and have significantly lower environmental dose rates. The dose response curves of the OSL signals for fine and coarse quartz are similar to those for loess and are also represented by the sum of two saturating exponential functions. For doses up to ~200 Gy, the dose response curves of fine and coarse grains from aeolianites can be superimposed and the ages obtained for the different grain sizes are in agreement up to ~250 ka, increasing our confidence in the accuracy of the ages obtained for samples with such doses, irrespective of the magnitude of the environmental dose rate. Particularly for the fine quartz fraction, a mismatch between the SAR dose response curve and the dose response curve obtained when doses are added to the natural is reported, indicating that the application of the SAR protocol in the high dose range is problematic. This dose dependent deviation is much less pronounced for coarse grains. Thus, it seems reasonable to infer that the dose response curves for the coarse grains, although saturating earlier can be regarded as more reliable for equivalent dose calculation than those for the fine grains.
Wydawca
Czasopismo
Rocznik
Strony
146--159
Opis fizyczny
Bibliogr. 43 poz., rys.
Twórcy
  • Faculty of Environmental Sciences and Engineering, Babeş-Bolyai University, Cluj-Napoca, Romania
  • Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeş-Bolyai University, Cluj-Napoca, Romania
  • Faculty of Environmental Sciences and Engineering, Babeş-Bolyai University, Cluj-Napoca, Romania
  • Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeş-Bolyai University, Cluj-Napoca, Romania
  • Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeş-Bolyai University, Cluj-Napoca, Romania
  • Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeş-Bolyai University, Cluj-Napoca, Romania
  • Faculty of Physics, Babeş-Bolyai University, Cluj-Napoca, Romania
autor
  • Earth Sciences (Geology and Paleontology “Guillem Colom”) Research Group, Department of Biology, Universitat de les Illes Balears, Palma, Spain
  • Earth Sciences (Geology and Paleontology “Guillem Colom”) Research Group, Department of Biology, Universitat de les Illes Balears, Palma, Spain
  • Earth Sciences (Geology and Paleontology “Guillem Colom”) Research Group, Department of Biology, Universitat de les Illes Balears, Palma, Spain
autor
  • Institute of Geography and Earth Sciences, Aberystwyth University, Aberystwyth, UK
  • McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, UK
Bibliografia
  • 1. Aitken MJ, 1985. Thermoluminescence dating. Academic Press, London.
  • 2. Buechi MW, Lowick SE and Anselmetti FS, 2017. Luminescence dating of glaciolacustrine silt in overdeepened basin fills beyond the last interglacial. Quaternary Geochronology37: 55–67.
  • 3. Chapot MS, Roberts HM, Duller GAT and Lai ZP, 2012. A comparison of natural- and laboratory-generated dose response curves for quartz optically stimulated luminescence signals from Chinese Loess. Radiation Measurements47(11–12): 1045–1052.
  • 4. Chawla S, Rao TKG and Singhvi AK, 1998. Quartz thermoluminescence: dose and dose rate effects and their implications.Radiation Measurements29(1): 53–63.
  • 5. Constantin D, Begy R, Vasiliniuc S, Panaiotu C, Necula C, Codrea V and Timar-Gabor A, 2014. High-resolution OSL dating of the Costinesti section (Dobrogea, SE Romania) using fine and coarse quartz. Quaternary International334–335: 20–29.
  • 6. Constantin D, Camenita A, Panaiotu C, Necula C, Codrea V and Timar-Gabor A, 2015a. Fine and coarse-quartz SAR-OSL dating of Last Glacial loess in Southern Romania. Quaternary International357: 33–43.
  • 7. Constantin D, Jain M, Murray AS, Buylaert J-P and Timar-Gabor A, 2015b. Quartz luminescence response to a mixed alpha - beta field: Investigations on Romanian loess. Radiation Measurements81: 110–115.
  • 8. del Valle L, Gómez-Pujol L, Fornós JJ, Timar-Gabor A, Anechitei–Deacu V and Pomar F, 2016. Middle to Late Pleistocene dunefields in rocky coast settings at Cala Xuclar (Eivissa, Western Mediterranean): Recognition, architecture and luminescence chronology. Quaternary International407: 4–13.
  • 9. Fiol LA, Fornós JJ, Gelabert B and Guijarro JA, 2005. Dust rains in Mallorca (Western Mediterranean): Their occurrence and role in some recent geological processes. Catena63(1): 64–84.
  • 10. Fornós JJ, Clemmensen LB, Gómez-Pujol L and Murray AS, 2009. Late Pleistocene carbonate aeolianites on Mallorca, Western Mediterranean: a luminescence chronology. Quaternary Science Reviews28(25–26): 2697–2709.
  • 11. Fornós JJ, Pomar L and Ramos-Guerrero E, 2002. Balearic Islands. In: Gibbons W and Moreno T, eds., The Geology of Spain. The Geological Society, London: 327–334.
  • 12. Frechen M, Schweitzer U and Zander A, 1996. Improvements in sample preparation for the fine grain technique. Ancient TL14(2): 15–17.
  • 13. Fuchs M, Kreutzer S, Rousseau DD, Antoine P, Hatté C, Lagroix F, Moine O, Gauthier C, Svoboda J, and Lenka L, 2013. The loess sequence of Dolní Věstonice, Czech Republic: A new OSL-based chronology of the Last Climatic Cycle. Boreas 42(3): 664–677.
  • 14. Guérin G, Mercier N and Adamiec G, 2011. Dose rate conversion factors: update. Ancient TL29: 5–8.
  • 15. Huntley DJ and Prescott JR, 2001. Improved methodology and new thermoluminescence ages for the dune sequence in south-east South Australia. Quaternary Science Reviews20(5–9): 687–699.
  • 16. Jacobs Z, 2008. Luminescence chronologies for coastal and marine sediments. Boreas37(4): 508–535.
  • 17. Klappa CF, 1980. Rhizolits in terrestrial carbonates: classification, recognition, genesis and significance. Sedimentology27: 613–629.
  • 18. Kreutzer S, Fuchs M, Meszner S and Faust D, 2012. OSL chronostratigraphy of a loess-palaeosol sequence in Saxony/Germany using quartz of different grain sizes. Quaternary Geochronology10: 102–109.
  • 19. Lai Z-P, 2010. Chronology and the upper dating limit for loess samples from Luochuan section in the Chinese Loess Plateau using quartz OSL SAR protocol. Journal of Asian Earth Sciences37(2): 176–185.
  • 20. Lai Z-P and Fan AC, 2013. Examining quartz OSL age underestimation for loess samples from Luochuan in the Chinese Loess Plateau. Geochronometria41(1): 57–64.
  • 21. Lang A, Lindauer S, Kuhn R and Wagner GA, 1996. Procedures used for optically and infrared stimulated luminescence dating of sediments in Heidelberg. Ancient TL14(3): 7–11.
  • 22. Lisiecki L and Raymo ME, 2005. A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records.Paleoceanography20(1): PA1003.
  • 23. Lomax J, Fuchs M, Preusser F and Fiebig M, 2014. Luminescence based loess chronostratigraphy of the Upper Palaeolithic site Krems-Wachtberg, Austria. Quaternary International351: 88–97.
  • 24. Muhs DR, Budahn J, Avila A, Skipp G, Freeman J and Patterson DA, 2010. The role of African dust in the formation of Quaternary soils on Mallorca, Spain and implications for the genesis of Red Mediterranean soils. Quaternary Science Reviews29: 2518–2543.
  • 25. Murray AS and Wintle AG, 2000. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements32(1): 57–73.
  • 26. Murray AS and Wintle AG, 2003. The single aliquot regenerative dose protocol: potential for improvements in reliability.Radiation Measurements37(4–5): 377–381.
  • 27. Prescott JR, Huntley DJ and Hutton JT, 1993. Estimation of equivalent dose in thermoluminescence dating - the Australian slide method. Ancient TL11(1): 1–5.
  • 28. Prescott JR and Hutton JT, 1994. Cosmic ray contributions to dose rates for luminescence and ESR dating: Large depths and long term variations. Radiation Measurements23(2–3): 497–500.
  • 29. Rangheard Y, 1971. Étude géologique des îles d’Ibiza et Formentera (Baléares) (Geological Study of Eivissa and Formentera (Balearic Islands)). Madrid, Memorias del Instituto Geológico y Minero de España: 340 pp (in French).
  • 30. Rangheard Y, 1984. The geological history of Eivissa and Formentera. In: Khubier H, Alcover JA and Gueraud’Arellano M, eds., Biogeography and Ecology of the Pityusic Islands. The Hague, Boston, Lancaster: Dr.W. Junk Publishers: pp. 25–104.
  • 31. Roberts HM, 2008. The development and application of luminescence dating to loess deposits: a perspective on the past, present and future. Boreas37(4): 483–507.
  • 32. Rose J, Meng X and Watson C, 1999. Paleoclimate and paleoenvironmental responses in the western Mediterranean over the last 140 ka: evidence from Mallorca, Spain. Journal of the Geological Society156(2): 435–448.
  • 33. Thomsen KJ, Bøtter-Jensen L, Denby P, Moska P and Murray AS, 2006. Developments in luminescence measurements techniques. Radiation Measurements41(7–8): 768–773.
  • 34. Timar-Gabor A, Buylaert J-P, Guralnik B, Trandafir-Antohi O, Constantin D, Anechitei-Deacu V, Jain M, Murray AS, Porat N, Hao Q, and Wintle AG, 2017. On the importance of grain size in luminescence dating using quartz. Radiation Measurements106: 464–471.
  • 35. Timar-Gabor A, Constantin D, Marković SB and Jain M, 2015a. Extending the area of investigation of fine versus coarse quartz optical ages from the Lower Danube to the Carpathian Basin. Quarternary International388: 168–176.
  • 36. Timar-Gabor A, Constantin D, Buylaert JP, Jain M, Murray AS and Wintle AG, 2015b. Fundamental investigations of natural and laboratory generated SAR dose response curves for quartz OSL in the high dose range. Radiation Measurements81: 50–156.
  • 37. Timar-Gabor A, Vandenberghe DAG, Vasiliniuc S, Panaiotu CE, Panaiotu CG, Dimofte D, and Cosma C, 2011. Optical dating of Romanian loess: a comparison between sand-sized and silt-sized quartz. Quaternary International240(1–2): 62–70.
  • 38. Timar-Gabor A, Vasiliniuc S, Vandenberghe DAG, Cosma C and Wintle AG, 2012. Investigations on the reliability of SAR-OSL equivalent doses obtained for quartz samples displaying dose response curves with more than one component.Radiation Measurements47(9): 740–745.
  • 39. Timar-Gabor A and Wintle AG, 2013. On natural and laboratory generated dose response curves for quartz of different grain sizes from Romanian loess. Quaternary Geochronology18: 34–40.
  • 40. Vandenberghe D, De Corte F, Buylaert J-P, Kučera J and Van den haute P, 2008. On the internal radioactivity in quartz.Radiation Measurements43(2–6): 771–775.
  • 41. Vasiliniuc S, Timar-Gabor A, Vandenberghe DAG, Panaiotu CG, Begy RC and Cosma C, 2011. A high resolution optical dating study of the Mostiştea loess-palaeosol sequence (SE Romania) using sandsized quartz. Geochronometria38(1): 34–41.
  • 42. Wintle AG and Murray AS, 2006. A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols. Radiation Measurements41(4): 369–391.
  • 43. Zazo C, 1999. Interglacial sea levels. Quaternary International55: 101–113.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-97aa9684-b818-4d35-8b4e-af8b5a2750b6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.