PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effective shaping of a stepped sandwich beam with clamped ends

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this work is to propose a sandwich beam with stepped layer thickness in three parts along its length. The total depth, width of the cross-section and its mass are constant. The beam is under a uniformly distributed load. The system of two equilibrium equa-tions was formulated for each part based on the literature. This system was analytically solved for the successive parts of the beam and the functions of the shear effect and deflection were determined in them. The effective stepped layer thicknesses was determined on the basis of the adopted criterion for minimizing the maximum deflection of the beam. The example calculations were made for two elected beams. The effective shapes of these beams are shown in the figures. Moreover, FEM numerical calculations of the deflections of these beams are performed.
Rocznik
Strony
200--204
Opis fizyczny
Bibliogr. 18 poz., rys., tab., wykr.
Twórcy
  • Łukasiewicz Research Network – Poznan Institute of Technology, Rail Vehicles Center, ul. Warszawska 181, 61-055 Poznań, Poland
  • Łukasiewicz Research Network – Poznan Institute of Technology, Rail Vehicles Center, ul. Warszawska 181, 61-055 Poznań, Poland
  • Łukasiewicz Research Network – Poznan Institute of Technology, Rail Vehicles Center, ul. Warszawska 181, 61-055 Poznań, Poland
Bibliografia
  • 1. Vinson JR. Sandwich structures. Applied Mechanics Reviews. 2001;54(3):201–214.
  • 2. Icardi U. Applications of Zig-Zag theories to sandwich beams. Me-chanics of Advanced Materials and Structures. 2003;10(1):77–97.
  • 3. Yang M, Qiao P. Higher-order impact modeling of sandwich struc-tures with flexible core. International Journal of Solids and Structures. 2005;42(20):5460–90.
  • 4. Magnucka-Blandzi E, Magnucki K. Effective design of a sandwich beam with a metal foam core. Thin-Walled Structures. 2007;45(4):432-8.
  • 5. Kreja I. A literature review on computational models for laminated composite and sandwich panels. Central European Journal of Engi-neering. 2011;1(1):59-80.
  • 6. Wang ZD, Li ZF. Theoretical analysis of the deformation of SMP sandwich beam in flexure. Archive of Applied Mechanics. 2011;81(11):1667–78.
  • 7. Nguyen CH, Chandrashekhara K, Birman V. Enhanced static re-sponse of sandwich panel with honeycomb cores through the use of stepped facings. Journal of Sandwich Structures and Materials. 2011;13(2):237-60.
  • 8. Phan CN, Frostig Y, Kardomateas GA. Analysis of sandwich beams with a compliant core and with in-plane rigidity–extended high-order sandwich panel theory versus elasticity. ASME: Journal of Applied Mechanics. 2012;79:041001–1-11.
  • 9. Magnucki K, Jasion P, Szyc W, Smyczynski M. Strength and buck-ling of a sandwich beam with thin binding layers between faces and a metal foam core. Steel and Composite Structures. 2014;16(3):325-37.
  • 10. Sayyad AS, Ghugal YM. Bending, buckling and free vibration of laminated composite and sandwich beams: a critical review of litera-ture. Composite Structures. 2017;171:486–504.
  • 11. Birman V, Kardomateas GA. Review of current trends in research and applications of sandwich structures. Composites Part B. 2018;142:221-40.
  • 12. Kozak J. Steel sandwich panels in ship structures. Gdańsk Tech Publishing House, 2018, Gdańsk. ISBN 978-83-7348-742-0 (in polish).
  • 13. Magnucki K. Bending of symmetrically sandwich beams and I-beams – Analytical study. International Journal of Mechanical Sciences. 2019;150:411-9.
  • 14. Magnucki K, Magnucka-Blandzi E, Lewiński J, Milecki S. Analytical and numerical studies of an unsymmetrical sandwich beam - bend-ing, buckling and free vibration. Engineering Transactions. 2019;67(4):491-512.
  • 15. Sayyad AS, Ghugal YM. Modeling and analysis of functionally grad-ed sandwich beams: A review. Mechanics of Advanced Materials and Structures. 2019;26(21):1776-95.
  • 16. Chinh TH, Tu TM, Duc DM, Hung TQ. Static flexural analysis of sandwich beam with functionally graded face sheets and porous core via point interpolation meshfree method based on polynomial basic function. Archive of Applied Mechanics. 2021;91(3):933–47.
  • 17. Magnucki K, Magnucka-Blandzi E, Wittenbeck L. Three models of a sandwich beam: Bending, buckling and free vibration. Engineering Transactions. 2022;70(2):97-122.
  • 18. Kustosz J, Magnucki K, Goliwąs D. Bending of a stepped sandwich beam: The shear effect. Engineering Transactions. 2022;70(4):373-390.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-97aa194f-bfe8-4260-bdc6-9aaa0af975f7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.