
Krzysztof Magnucki, Joanna Kustosz, Damian Goliwąs           DOI 10.2478/ama-2023-0023 
Effective Shaping of a Stepped Sandwich Beam with Clamped Ends  

200 

EFFECTIVE SHAPING OF A STEPPED SANDWICH BEAM WITH CLAMPED ENDS  

Krzysztof MAGNUCKI* , Joanna KUSTOSZ* , Damian GOLIWĄS*   

*Łukasiewicz Research Network – Poznan Institute of Technology, Rail Vehicles Center,  
ul. Warszawska 181, 61-055 Poznań, Poland 

krzysztof.magnucki@pit.lukasiewicz.gov.pl, joanna.kustosz@pit.lukasiewicz.gov.pl, damian.goliwas@pit.lukasiewicz.gov.pl  

received 25 November 2022, revised 10 January 2023, accepted 10 January 2023 

Abstract: The aim of this work is to propose a sandwich beam with stepped layer thickness in three parts along its length. The total depth, 
width of the cross-section and its mass are constant. The beam is under a uniformly distributed load. The system of two equilibrium equa-
tions was formulated for each part based on the literature. This system was analytically solved for the successive parts of the beam and 
the functions of the shear effect and deflection were determined in them. The effective stepped layer thicknesses was determined on the 
basis of the adopted criterion for minimizing the maximum deflection of the beam. The example calculations were made for two elected 
beams. The effective shapes of these beams are shown in the figures. Moreover, FEM numerical calculations of the deflections of these 
beams are performed. 

Key words: analytical modelling, bending, shaping criterion, FEM calculation

1. INTRODUCTION 

Sandwich constructions initiated in the 20th century are inten-
sively developed in the 21st century. Vinson [1] presented a gen-
eral introduction to the mechanics of sandwich structures with 
reference to the 174 articles. Icardi [2] developed a sublaminate 
model taking into account the zig-zag theory for the analysis of 
laminated and sandwich beams. The aim is to show the ad-
vantages of using higher-order approximations of displacements 
in sublaminates. Yang and Qiao [3] developed an analytical high-
order impact model of a soft-core sandwich beam to analyse its 
response to foreign body impact. The results of analytical tests 
were compared with the results of FEM (Finite Element Method) 
numerical tests. Magnucka-Blandzi and Magnucki [4] presented 
the problem of effective shaping of a sandwich beam with a metal 
foam core with variable properties along its thickness. The optimal 
dimensionless parameters of the beam were determined on the 
basis of the adopted criterion. Kreja [5] described, based on a 
review of 246 articles, the state of the art in the field of analytical 
and numerical FEM methods used in the calculations of laminated 
composite and sandwich panels. Wang and Li [6] presented a 
theoretical analysis of bending of two types of sandwich beams 
with aluminium or steel facings and cores made of shape memory 
polymers. Nguyen et al. [7] studied sandwich panels with stepped 
facings and honeycomb cores. They have demonstrated in nu-
merous examples that stepped linings can increase the strength 
and rigidity of sandwich structures. Phan et al. [8], taking into 
account the high-order theory of sandwich panels (HSAPT), de-
veloped a one-dimensional high-order theory for elastic ortho-
tropic sandwich beams, taking into account the transverse com-
pressibility of the core. Magnucki et al. [9] developed analytical 
and numerical FEM models of a five-layer sandwich beam and 
analysed its strength and stability. Sayyad and Ghugal [10] made 

a critical review of analytical and numerical studies described in 
selected 515 papers on bending, buckling and free vibration of 
homogeneous, laminated composite and sandwich beams, taking 
into account the applied theories. Birman and Kardomateas [11] 
presented, based on a review of 363 articles, contemporary trends 
in the development of sandwich structures in terms of theory and 
their practical application, with an emphasis on aviation, civil and 
marine engineering, electronics and biomedicine. In addition, 
sandwich structures are used in ships, which was described in 
detail by Kozak in 2018 [12]. Magnucki [13] presented analytical 
studies of bending of sandwich and I-beams with a symmetrical 
structure using two deformation models of flat cross-sections. 
Magnucki et al. [14] studied analytical and numerical FEM bend-
ing, buckling and free vibration of a sandwich beam with an 
asymmetric structure. The analytical model was developed taking 
into account the classic broken-line theory. Sayyad and Ghugal 
[15] presented a review of research, including 250 articles, on the 
modelling and analysis of functionally stepped sandwich beams 
and indicated directions for further research. Chinh et al. [16] 
analysed the bending of sandwich beams with a symmetrical 
structure with functionally stepped facings and a porous core 
subjected to a uniformly distributed load. Four types of supports 
for these beams, simply supported, clamped-clamped, clamped-
hinged and clamped-free, were included. Magnucki et al. [17] 
developed three models of a simply supported sandwich beam 
and studied analytical and numerical FEM bending, buckling and 
free vibration. Kustosz et al. [18] analysed analytical and numeri-
cal FEM bending of a stepped sandwich beam with fixed ends 
under the action of a uniformly distributed load along its length. 
This work is a theoretical study presenting a generalized model of 
a sandwich beam, thanks to which it is possible to test the bend-
ing strength of beams with stepped structures. 

The aim of this work is to propose the effective shaping of a 
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symmetrically stepped sandwich beam along its length. This work 
is a continuation of the studies presented in the paper [18].  

2. ANALYTICAL STUDIES 

2.1.  Analytical model of the stepped sandwich beam 

The subject of the studies is the sandwich beam stepped in 
three parts arranged symmetrically along its length. This beam 
with clamped ends of the length L, the total depth h and width b is 
subjected to the uniform load of intensity q (Fig. 1).  

 
Fig. 1. Scheme of the stepped sandwich beam and the load 

The volume of the core of the classical sandwich beam with 
constant layer thicknesses is given as follows  

𝑉𝑐
(𝑐𝑙)

= 𝑏ℎ𝑐𝐿, (1) 

where ℎ𝑐  is the thickness of the core. 
However, the volume of the core of the stepped sandwich 

beam (Fig. 1) is given in the following form: 

𝑉𝑐
(𝑠𝑡)

= 𝑏(2ℎ𝑐1𝐿1 + ℎ𝑐2𝐿2),  (2) 

where ℎ𝑐1 is the thickness, 𝐿1 is the length of the first part of the 
beam, ℎ𝑐2 is the thickness and 𝐿2 is the length of the second-
middle part of the beam.  

Equating the volumes of the core of the classical beam (1) 

and the stepped beam (2), 𝑉𝑐
(𝑐𝑙)

= 𝑉𝑐
(𝑠𝑡)

, after simple transfor-
mation, the following is obtained: 

2𝜒𝑐1𝜆1 + 𝜒𝑐2𝜆2 = 𝜒𝑐𝜆 = const,  (3) 

from which 

𝜒𝑐2 =
𝜒𝑐𝜆−2𝜒𝑐1𝜆1

𝜆−2𝜆1
,  (4) 

where 𝜒𝑐 = ℎ𝑐 ℎ⁄ , 𝜒𝑐1 = ℎ𝑐1 ℎ⁄ , 𝜒𝑐2 = ℎ𝑐2 ℎ⁄  is the relative 
thicknesses of the cores and 𝜆 = 𝐿 ℎ⁄ , 𝜆1 = 𝐿1 ℎ⁄ , 𝜆2 = 𝐿2 ℎ⁄  

is the relative lengths of the beam and its parts, also 2𝜆1 + 𝜆2 =
𝜆.  

It is noted that the expression (3) also provides a constant 
volume of the faces, so it is a condition for constant mass of the 
stepped sandwich beam. 

The system of two differential equations of equilibrium for indi-
vidual parts of the stepped sandwich beam, based on the paper 
[18], is formulated in the following form: 

𝐶𝑣𝑣𝑖
𝑑2�̅�(𝑖)

𝑑𝜉2 − 𝐶𝑣𝜓𝑖

𝑑𝜓𝑓
(𝑖)

𝑑𝜉
= −6[(𝜉 − 𝜉2)𝑞𝐿2 − 2𝑀0]

𝜆

𝐸𝑓𝑏ℎ2,  (5) 

𝐶𝑣𝜓𝑖
𝑑3�̅�(𝑖)

𝑑𝜉3 − 𝐶𝜓𝜓𝑖

𝑑2𝜓𝑓
(𝑖)

𝑑𝜉2 + 𝐶𝜓𝑖𝜆
2𝜓𝑓

(𝑖)(𝜉) = 0,  (6) 

where 𝜉 = 𝑥 𝐿⁄  is the dimensionless coordinate, 𝑖 = 1, 2 is the 

number of the beam part, �̅�(𝑖)(𝜉) = 𝑣(𝑖)(𝜉) 𝐿⁄  is the relative 

deflection, 𝜓𝑓
(𝑖)(𝜉) is the dimensionless longitudinal displace-

ments in faces, 𝐶𝑣𝑣𝑖 = 1 − (1 − 𝑒𝑐)𝜒𝑐𝑖
3 , 𝐶𝑣𝜓𝑖 = 3 −

(3 − 2𝑒𝑐)𝜒𝑐𝑖
2 , 𝐶𝜓𝜓𝑖 = 4[3 − (3 − 𝑒𝑐)𝜒𝑐𝑖], 𝐶𝜓𝑖 =

24

1+𝜈𝑐
 

𝑒𝑐

𝜒𝑐𝑖
, 

𝑒𝑐 = 𝐸𝑐 𝐸𝑓⁄  is the dimensionless coefficient, 𝐸𝑓 , 𝐸𝑐  is the Young 

modulus of faces and the core, 𝜈𝑐  is the Poisson ratio of the core 

and 𝑀0 is the clamped-ends moment. 
This system of two differential equations, Eqs (5) and (6), after 

simple transformation, is reduced to one differential equation in 
the following form: 

𝑑2𝜓𝑓
(𝑖)

𝑑𝜉2 − (𝛼𝑖𝜆)2𝜓𝑓
(𝑖)(𝜉) = −6(1 − 2𝜉)

𝐶𝑣𝜓𝑖

𝐶𝑣𝑣𝑖𝐶𝜓𝜓𝑖−𝐶𝑣𝜓𝑖
2 𝜆3 𝑞

𝐸𝑓𝑏
, (7) 

where 𝛼𝑖 = √
𝐶𝑣𝜓𝑖𝐶𝜓𝑖

𝐶𝑣𝑣𝑖𝐶𝜓𝜓𝑖−𝐶𝑣𝜓𝑖
2  is the dimensionless coefficient. 

The solution of this equation is given as the following function: 

𝜓𝑓
(𝑖)(𝜉) = 𝑘𝑐𝑖[𝐶1𝑖 sinh(𝛼𝑖𝜆𝜉) + 𝐶2𝑖 cosh(𝛼𝑖𝜆𝜉) +

+6(1 − 2𝜉)]𝜆
𝑞

𝐸𝑓𝑏
,

 (8) 

where 𝑘𝑐𝑖 =
𝐶𝑣𝜓𝑖

𝐶𝑣𝑣𝑖𝐶𝜓𝑖
 is the coefficient and 𝐶1𝑖,  𝐶2𝑖 are integration 

constants. 
Eq. (5), after the first integration, is given as follows: 

𝐶𝑣𝑣𝑖
𝑑�̅�(𝑖)

𝑑𝜉
= 𝐶3𝑖 + 𝐶𝑣𝜓𝑖𝜓𝑓

(𝑖)(𝜉) − 6 (
1

2
𝜉2 −

1

3
𝜉3 −

2𝜉�̅�0) 
𝑞𝜆3

𝐸𝑓𝑏
,  (9) 

where 𝐶3𝑖 is the integration constant and �̅�0 = 𝑀0 𝑞𝐿2⁄  is the 
dimensionless clamped-ends moment.  

2.2.  Analytical solution 

The analytical solution is realized in the individual parts of the 
stepped beam.  

The dimensionless longitudinal displacements in faces:  

 the first part (𝑖 = 1), 0 ≤ 𝜉 ≤ 𝜆1 𝜆⁄   

The function (8), with consideration of the boundary condition 

𝜓𝑓
(1)(0) = 0, from which 𝐶21 = −6, is provided in the following 

form: 

𝜓𝑓
(1)(𝜉) = 𝑘𝑐1[𝐶11 sinh(𝛼1𝜆𝜉) − 6 cosh(𝛼1𝜆𝜉) +

+6(1 − 2𝜉)]
𝑞𝜆

𝐸𝑓𝑏
.

 (10) 

This function for 𝜉 = 𝜆1 𝜆⁄  is as follows  

𝜓𝑓
(1)

(
𝜆1

𝜆
) = 𝑘𝑐1 [𝐶11 sinh(𝛼1𝜆1) − 6 cosh(𝛼1𝜆1) +

6
𝜆2

𝜆
]

𝑞𝜆

𝐸𝑓𝑏
,  (11) 

 the second-middle part (𝑖 = 2), 𝜆1 𝜆⁄ ≤ 𝜉 ≤ 1 2⁄   

The function (8), with consideration of the condition 

𝜓𝑓
(2)(1 2⁄ ) = 0 and simplification, is provided in the following 

form: 

𝜓𝑓
(2)(𝜉) = 6𝑘𝑐2(1 − 2𝜉)

𝑞𝜆

𝐸𝑓𝑏
.  (12) 
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Taking into account the continuity condition for the longitudinal 

displacements in faces 𝜓𝑓
(1)(𝜆1 𝜆⁄ ) = 𝜓𝑓

(2)(𝜆1 𝜆⁄ ), the integra-

tion constant is obtained as follows: 

𝐶11 =
6

sinh(𝛼1𝜆1)
[cosh(𝛼1𝜆1) +

𝑘𝑐2−𝑘𝑐1

𝑘𝑐1

𝜆2

𝜆
].  (13) 

Consequently, the function (10) is provided in the following form: 

𝜓𝑓
(1)(𝜉) = 6𝑘𝑐1 {−

sinh[𝛼1(𝜆1−𝜆𝜉)]

sinh(𝛼1𝜆1)
+

sinh(𝛼1𝜆𝜉)

sinh(𝛼1𝜆1)

𝑘𝑐2−𝑘𝑐1

𝑘𝑐1

𝜆2

𝜆
+

+1 − 2𝜉}
𝑞𝜆

𝐸𝑓𝑏
.

(14) 

Therefore, the function for 𝜉 = 𝜆1 𝜆⁄  is given as follows: 

𝜓𝑓
(1)

(
𝜆1

𝜆
) = 6𝑘𝑐2𝜆2

𝑞

𝐸𝑓𝑏
  (15) 

The relative deflection:  

 the first part (𝑖 = 1), 0 ≤ 𝜉 ≤ 𝜆1 𝜆⁄   

Eq. (9), with consideration of the boundary condition 

𝑑�̅�(1) 𝑑𝜉⁄ |0 = 0, from which 𝐶31 = 0, is provided in the follow-
ing form: 

𝐶𝑣𝑣1
𝑑�̅�(1)

𝑑𝜉
= 𝐶𝑣𝜓1𝜓𝑓

(1)(𝜉) − 6 (
1

2
𝜉2 −

1

3
𝜉3 − 2𝜉�̅�0) 

𝑞𝜆3

𝐸𝑓𝑏
. (16) 

Therefore, the derivative of the relative deflection curve for 
𝜉 = 𝜆1 𝜆⁄  is given as follows  

𝑑�̅�(1)

𝑑𝜉
|𝜆1

𝜆

=

{6𝐶𝑣𝜓1𝑘𝑐2
𝜆2

𝜆
− [(2 +

𝜆2

𝜆
)

𝜆1

𝜆
− 12�̅�0] 𝜆1𝜆}

𝑞𝜆

𝐶𝑣𝑣1𝐸𝑓𝑏
.  (17) 

Eq. (16) after integration is given as follows:  

𝐶𝑣𝑣1�̅�(1)(𝜉) = 𝐶41 + 6𝑘𝑐1𝐶𝑣𝜓1Φ𝜓
(1)(𝜉)

𝑞𝜆

𝐸𝑓𝑏
−

−6 (
𝜉3

6
−

𝜉4

12
− 𝜉2�̅�0)

𝑞𝜆3

𝐸𝑓𝑏
,

 (18) 

where 

Φ𝜓
(1)(𝜉) =

cosh[𝛼1(𝜆1−𝜆𝜉)]

𝛼1𝜆1 sinh(𝛼1𝜆1)
+

cosh(𝛼1𝜆𝜉)

𝛼1𝜆1 sinh(𝛼1𝜆1)

𝑘𝑐2−𝑘𝑐1

𝑘𝑐1

𝜆2

𝜆
+ 𝜉 −

𝜉2. (19) 

Based on the boundary condition �̅�(1)(0) = 0, the integra-
tion constant is given as follows: 

𝐶41 = −
6𝑘𝑐1

sinh(𝛼1𝜆1)

𝐶𝑣𝜓1

𝛼1𝜆
[cosh(𝛼1𝜆1) +

𝑘𝑐2−𝑘𝑐1

𝑘𝑐1

𝜆2

𝜆
]

𝑞𝜆

𝐸𝑓𝑏
.  (20) 

Therefore, the relative deflection of this part for 𝜉 = 𝜆1 𝜆⁄  is 
given as follows: 

�̅�(1) (
𝜆1

𝜆
) = {6𝑘𝑐1𝐶𝑣𝜓1 [

𝑘0

𝛼1𝜆
(

𝑘𝑐2−𝑘𝑐1

𝑘𝑐1

𝜆2

𝜆
− 1) + (1 −

𝜆1

𝜆
)

𝜆1

𝜆
] −

− [
1

2
(2 −

𝜆1

𝜆
)

𝜆1

𝜆
− 6�̅�0] 𝜆1

2}
𝑞𝜆

𝐶𝑣𝑣1𝐸𝑓𝑏
,

 (21) 

where 𝑘0 =
cosh(𝛼1𝜆1)−1

sinh(𝛼1𝜆1)
 is the dimensionless coefficient.  

 the second-middle part (𝑖 = 2), 𝜆1 𝜆⁄ ≤ 𝜉 ≤ 1 2⁄   

Taking into account Eq. (9) with consideration of the function 

(12), based on the condition 𝑑�̅�(2) 𝑑𝜉⁄ |1 2⁄ = 0, the integration 

constant is obtained as follows:  

𝐶32 =
1

2
(1 − 12�̅�0)

𝑞𝜆3

𝐸𝑓𝑏
. (22) 

Therefore, Eq. (9) is provided in the following form: 

𝐶𝑣𝑣2
𝑑�̅�(2)

𝑑𝜉
= {6𝐶𝑣𝜓2𝑘𝑐2(1 − 2𝜉) + [

1

2
− 3𝜉2 + 2𝜉3 −

−6(1 − 2𝜉)�̅�0]𝜆2}
𝑞𝜆

𝐸𝑓𝑏
.

 (23) 

Thus, the derivative of the relative deflection curve for 

𝜉 = 𝜆1 𝜆⁄  is given as follows: 

𝑑�̅�(2)

𝑑𝜉
|𝜆1

𝜆

= {6𝐶𝑣𝜓2𝑘𝑐2
𝜆2

𝜆
+ [

1

2
− (3 − 2

𝜆1

𝜆
) (

𝜆1

𝜆
)

2

−

−6
𝜆2

𝜆
�̅�0] 𝜆2}

𝑞𝜆

𝐶𝑣𝑣2𝐸𝑓𝑏
.

 (24) 

Based on the continuity condition for the derivative of the rela-

tive deflection curve 𝑑�̅�(1) 𝑑𝜉⁄ |𝜆1 𝜆⁄ = 𝑑�̅�(2) 𝑑𝜉⁄ |𝜆1 𝜆⁄ , the 

dimensionless clamped-ends moment is obtained as follows:  

�̅�0 =
Ν𝑀0

12[2(𝐶𝑣𝑣1−𝐶𝑣𝑣2)𝜆1−𝐶𝑣𝑣1𝜆]𝜆
,  (25) 

where the numerator of this expression is given as follows: 

Ν𝑀0 = 12(𝐶𝑣𝑣2𝐶𝑣𝜓1 − 𝐶𝑣𝑣1𝐶𝑣𝜓2)
𝜆2

𝜆
𝑘𝑐2 − 𝐶𝑣𝑣1𝜆2 +

+2(𝐶𝑣𝑣1 − 𝐶𝑣𝑣2) (2 +
𝜆2

𝜆
) 𝜆1

2.
 (26) 

Eq. (23) after integration is given as follows: 

𝐶𝑣𝑣2�̅�(2)(𝜉) = 𝐶42 + {6𝐶𝑣𝜓2𝑘𝑐2(𝜉 − 𝜉2) + [
1

2
𝜉 − 𝜉3 +

+
1

2
𝜉4 − 6(𝜉 − 𝜉2)�̅�0]𝜆2}

𝑞𝜆

𝐸𝑓𝑏
.

 (27) 

Based on the continuity condition for the relative deflection 

curve �̅�(1)(𝜆1 𝜆⁄ ) = �̅�(2)(𝜆1 𝜆⁄ ), the integration constant is 
obtained as follows: 

𝐶42 = [6(𝐶4̅21 − 𝐶4̅22) − (𝐶4̅23 + 𝐶4̅24)𝜆2]
𝑞𝜆

𝐸𝑓𝑏
, (28) 

where 

𝐶4̅21 = 𝐶𝑣𝜓1
𝐶𝑣𝑣2

𝐶𝑣𝑣1
𝑘𝑐1 {

𝑘0

𝛼1𝜆
(

𝑘𝑐2−𝑘𝑐1

𝑘𝑐1

𝜆2

𝜆
− 1) + (1 −

𝜆1

𝜆
)

𝜆1

𝜆
},  

𝐶4̅22 = 𝐶𝑣𝜓2𝑘𝑐2 (1 −
𝜆1

𝜆
)

𝜆1

𝜆
,  

𝐶4̅23 =
𝐶𝑣𝑣2

𝐶𝑣𝑣1
[

1

2
(2 −

𝜆1

𝜆
)

𝜆1

𝜆
− 6�̅�0] (

𝜆1

𝜆
)

2

,  

𝐶4̅24 = {
1

2
[1 + (1 −

𝜆1

𝜆
)

𝜆1

𝜆
] − 6�̅�0} (1 −

𝜆1

𝜆
)

𝜆1

𝜆
.  

Taking into account Eq. (27), the maximum relative deflection 
of the stepped sandwich beam is given as follows: 

�̅�max = �̅�(2) (
1

2
) = �̃�max

𝑞

𝐸𝑓𝑏
, (29) 

where 

�̃�max = (�̃�𝜓 + �̃�𝑣𝜆2)𝜆, (30) 

and 

�̃�𝜓 = 6 {
𝐶𝑣𝜓1

𝐶𝑣𝑣1

𝑘0

𝛼1𝜆
[(𝑘𝑐2 − 𝑘𝑐1)

𝜆2

𝜆
− 𝑘𝑐1] +

1

4

𝐶𝑣𝜓2

𝐶𝑣𝑣2
𝑘𝑐2 +

+ (
𝐶𝑣𝜓1

𝐶𝑣𝑣1
𝑘𝑐1 −

𝐶𝑣𝜓2

𝐶𝑣𝑣2
𝑘𝑐2) (1 −

𝜆1

𝜆
)

𝜆1

𝜆
} ,

 (31) 
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�̃�𝑣 = (
5

32
−

3

2
�̅�0 − 𝐶4̅23 − 𝐶4̅24)

1

𝐶𝑣𝑣2
. (32) 

Thus, the criterion of effective shaping of the stepped sand-
wich beam was assumed as the minimization of the maximum 
dimensionless deflection of this beam, with considering two ex-

pressions (4) and 𝜆2 = 𝜆 − 2𝜆1, and is obtained in the following 

form: 

min𝜆1,𝜒𝑐1
[�̃�max(𝜆1, 𝜒𝑐1)].  (33) 

The detailed calculations are carried out for the exemplary 
stepped sandwich beams. 

3. DETAILED CALCULATIONS 

3.1.  Beam B-1 

The data of the classical sandwich beam B-1 are specified  
in Tab. 1. However, the results of the calculations, the effective 
dimensionless sizes and maximal deflection, are specified  
in Tab. 2. 

Tab. 1. The classical sandwich beam – B-1 

𝜆 𝑒𝑐 𝜈𝑐 𝜒𝑐 �̃�max 

20 1 20⁄  0.3 17 20⁄  728.66 

Tab. 2. The effective dimensionless sizes and maximal deflection – B-1 

𝜆1,𝑒𝑓  𝜆2,𝑒𝑓 𝜒𝑐1,𝑒𝑓 𝜒𝑐2,𝑒𝑓 �̃�max 

2.4 15.2 14.66 20⁄  17.74 20⁄  676.02 

Moreover, the graph of the dimensionless longitudinal dis-
placements – shear effect functions (12) and (14) – is shown in 
Fig. 2, and the scheme of the effective shape of the stepped 
sandwich beam is shown in Fig. 3. 

 
Fig. 2. The graph of the dimensionless longitudinal displacements – 

shear effect functions 

 
Fig. 3. The scheme of the effective shape of the stepped sandwich beam 

3.2.  Beam B-2 

The data of the classical sandwich beam B-2 are specified in 
Tab. 3. Moreover, the results of the calculations, the effective 
dimensionless sizes and maximal deflection, are specified in Tab. 
4, and the graph of the dimensionless longitudinal displacements 
– shear effect functions (12) and (14) – is shown in Fig. 4. The 
scheme of the effective shape of this stepped sandwich beam is 
similar to Fig. 3. 

Tab. 3. The classical sandwich beam – B-2 

𝜆 𝑒𝑐 𝜈𝑐 𝜒𝑐 �̃�max 

20 1 20⁄  0.3 16 20⁄  613.14 

Tab. 4. The effective dimensionless sizes and maximal deflection – B-2 

𝜆1,𝑒𝑓 𝜆2,𝑒𝑓 𝜒𝑐1,𝑒𝑓 𝜒𝑐2,𝑒𝑓 �̃�max 

2.5 15.0 13.22 20⁄  16.93 20⁄  576.16 

 
Fig. 4. The graph of the dimensionless longitudinal displacements – 

shear effect functions 

4. NUMERICAL FEM STUDIES 

4.1.  Beam B-1 

The numerical model of the example effective stepped sand-
wich beam B-1 was developed in the ABAQUS 6.12 system using 
84,000 hexahedral linear finite elements (C3D8R type). The mod-
el of the beam is solid and represents only half of the beam due to 
the symmetry. The longitudinal x-axis is collinear with the beam 
neutral axis, the y-axis is directed and the z-axis is parallel to the 
cross-section of the beam. The beam is under a continuous load 
and its ends are clamped (Fig. 5). 

 
Fig. 5. The scheme of the numerical FEM model of the effective stepped 

sandwich beam B-1 
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The value of the maximum deflection determined numerically 
is as follows: �̃�max = 678.96. The difference between analytical 
(An) and numerical (FEM) results is 0.43% in these exemplary 
stepped sandwich beam. 

4.2.  Beam B-2 

The numerical model of the B-2 beam is analogous to the 
model of the B-1 beam. The value of the maximum deflection 
determined numerically is given as follows: �̃�max = 581.58. The 
difference between analytical (An) and numerical (FEM) results is 
0.94% in these exemplary stepped sandwich beams. 

5. CONCLUSIONS 

The detailed calculations for the exemplary stepped sandwich 
beams provide the following conclusions:  

 The stiffness of the sandwich structures can be increased by 
introducing stepped facings, which is expressed in smaller 
maximum deflections compared to the maximum deflection of 
the classical sandwich beam, and so for the beam B-1 by 
7.2% and for the beam B-2 by 6.0%. 

 The developed analytical and numerical FEM models of this 
beam are equivalent, the differences between the values of 
the maximum deflections of the exemplary beams calculated 
based on these two models are less than 1%, and so for the 
beam B-1 is 0.43% and for the beam B-2 is 0.94%. 

 The facings thicknesses of the effective sandwich beams in 
the first part, at clamped beam ends, are greater than the fac-
ings thicknesses in the middle part of these beams (Figs. 3 
and 5). 

 In future works related to this paper, the problem of effective 
shaping of sandwich beams with a stepped structure, taking 
into account the local buckling (face wrinkling), could be con-
sidered. 
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