Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
For abstract linear systems in Hilbert spaces we revisit the problems of exact controllability and complete stabilizability (stabilizability with an arbitrary decay rate), the latter property being related to exact null controllability. We also consider the case when the feedback is not bounded. We obtain a characterization of complete stabilizability for neutral type systems. Conditions for exact null controllability of neutral type systems are discussed. By duality, we obtain a result about continuous final observability. Illustrative examples are given.
Rocznik
Tom
Strony
489--499
Opis fizyczny
Bibliogr. 41 poz.
Twórcy
autor
- Research Institute of Communication and Cybernetics, IMT Atlantique, Mines-Nantes, 4 rue Alfred Kastler, BP 20722, 44307 Nantes, France
autor
- Institute of Mathematics, University of Szczecin, Wielkopolska 15, 70-451 Szczecin, Poland
autor
- Institute for Low Temperature Physics and Engineering, National Academy of Sciences, 47 Lenin Ave., 61103 Kharkiv, Ukraine
Bibliografia
- [1] Curtain, R.F., Logemann, H., Townley, S. and Zwart, H. (1997). Well-posedness, stabilizability, and admissibility for Pritchard–Salamon systems, Journal of Mathematical Systems, Estimation, and Control 4(4): 493–496.
- [2] Curtain, R.F. and Zwart, H. (1995). An Introduction to Infinitedimensional Linear Systems Theory, Texts in Applied Mathematics, Vol. 21, Springer-Verlag, New York, NY.
- [3] Douglas, R.G. (1966). On majorization, factorization, and range inclusion of operators on Hilbert space, Proceedings of the American Mathematical Society 17: 413–415.
- [4] Dusser, X. and Rabah, R. (2001). On exponential stabilizability of linear neutral systems, Mathematical Problems in Engineering 7(1): 67–86.
- [5] Guo, F., Zhang, Q. and Huang, F. (2003). Well-posedness and admissible stabilizability for Pritchard–Salamon systems, Applied Mathematical Letters 16(1): 65–70.
- [6] Hale, J.K. and Verduyn Lunel, S.M. (1993). Introduction to Functional-Differential Equations, Applied Mathematical Sciences, Vol. 99, Springer-Verlag, New York, NY.
- [7] Hale, J.K. and Verduyn Lunel, S.M. (2002). Strong stabilization of neutral functional differential equations, IMA Journal of Mathematical Control and Information 19(1–2): 5–23.
- [8] Ito, K. and Tarn, T.J. (1985). A linear quadratic optimal control for neutral systems, Nonlinear Analysis 9(7): 699–727.
- [9] Khartovskiǐ, V.E. and Pavlovskaya, A.T. (2013) Complete controllability and controllability for linear autonomous systems of neutral type, Automation and Remote Control 79(5): 769–784.
- [10] Kuperman, L.M. and Repin, Ju. M. (1971) On the question of controllability in infinite-dimensional spaces, Doklady Akademii Nauk SSSR 200(3): 767–769, (in Russian). English translation: Soviet Mathematics—Doklady 12(5): 1469–1472.
- [11] Logemann, H. and Pandolfi, L. (1994) A note on stability and stabilizability of neutral systems, IEEE Transactions on Automatic Control 39(1): 138–143.
- [12] Louis, J.-C. and Wexler, D. (1983). On exact controllability in Hilbert spaces, Journal of Differential Equations 49(2): 258–269.
- [13] Marčenko, V.M. (1979). On the controllability of zero function of time lag systems, Problems of Control and Information Theory/Problemy Upravlenia i Teoria Informacii 8(5–6): 421–432.
- [14] Megan, M. (1975). On the stabilizability and controllability of linear dissipative systems in Hilbert space, Seminarul de Ecuatii Functional, Universitatea din Timisoara 32: 1–15.
- [15] Metel'skiǐ, A.V. and Khartovskii, S.A. (2016). Criteria for modal controllability of linear systems of neutral type, Differential Equations 52(11): 1453–1468.
- [16] Metel'skiǐ, A.V. and Minyuk, S.A. (2006). A criterion of constructive identifiability and complete controllability of linear time-independent systems of neutral type, Izvestiya Rossiiskoi Akademii Nauk: Teoriya i Sistemy Upravleniya (5): 15–23, (in Russian). English translation: Journal of Computer and Systems Sciences International 45(5): 690–698.
- [17] Michiels, W. and Niculescu, S.-I. (2007). Stability and Stabilization of Time-Delay Systems. An Eigenvalue-Based Approach, Advances in Design and Control, Vol. 12, SIAM, Philadelphia, PA.
- [18] O’Connor, D.A. and Tarn, T.J. (1983). On stabilization by state feedback for neutral differential equations, IEEE Transactions on Automatic Control 28(5): 615–618.
- [19] Olbrot, A.W. and Pandolfi, L. (1988). Null controllability of a class of functional-differential systems, International Journal on Control 47(1): 193–208.
- [20] Pandolfi, L. (1976). Stabilization of neutral functional differential equations, Journal of Optimization Theory and Applications 20(2): 191–204.
- [21] Pazy, A. (1983). Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, Vol. 44, Springer-Verlag, New York, NY.
- [22] Pritchard, A.J. and Salamon, D. (1987). The linear quadratic control problem for infinite dimensional systems with unbounded input and output operators, SIAM Journal on Control and Optimization 25(1): 121–144.
- [23] Rabah, R. and Karrakchou, J. (1997). On exact controllability and complete stabilizability for linear systems in Hilbert spaces, Applied Mathematics Letters 10(1): pp. 35–40.
- [24] Rabah, R. and Sklyar, G.M. (2007). The analysis of exact controllability of neutral-type systems by the moment problem approach, SIAM Journal on Control and Optimization 46(6): 2148–2181.
- [25] Rabah, R. and Sklyar, G.M. (2016). Exact observability and controllability for linear neutral type systems, Systems and Control Letters 89: 8–15.
- [26] Rabah, R., Sklyar, G.M. and Barkhayev, P.Y. (2012). Stability and stabilizability of mixed retarded-neutral type systems, ESAIM Control, Optimization and Calculus of Variations 18(3): 656–692.
- [27] Rabah, R., Sklyar, G.M. and Barkhayev, P.Y. (2014). On the exact controllability and observability of neutral type systems, Communications on Mathematical Analysis 17(2): 279–294.
- [28] Rabah, R., Sklyar, G.M. and Barkhayev, P.Y. (2016). On exact controllability of neutral time-delay systems, Ukrainian Mathematical Journal 68(6): 800–815.
- [29] Rabah, R., Sklyar, G.M. and Rezounenko, A.V. (2005). Stability analysis of neutral type systems in Hilbert space, Journal of Differential Equations 214(2): 391–428.
- [30] Rabah, R., Sklyar, G.M. and Rezounenko, A.V. (2008). On strong regular stabilizability for linear neutral type systems, Journal of Differential Equations 245(3): 569–593.
- [31] Rhandi, A. (2002). Spectral Theory for Positive Semigroups and Applications, Quaderni di Matematica, Vol. 2, ESE—Salento University Publishing, Lecce.
- [32] Richard, J.-P. (2003). Time-delay systems: An overview of some recent advances and open problems, Automatica 39(10): 1667–1694.
- [33] Salamon, D. (1983). Neutral functional differential equations and semigroups of operators, in F. Kappel et al. (Eds.), Control Theory for Distributed Parameter Systems and Applications, Lecture Notes in Control and Information Sciences, Vol. 54, Springer, Berlin, pp. 188–207.
- [34] Salamon, D. (1984). Control and Observation of Neutral Systems, Research Notes in Mathematics, Vol. 91, Pitman (Advanced Publishing Program), Boston, MA.
- [35] Salamon, D. (1987). Infinite dimensional linear systems with unbounded control and observation: A functional analytical approach, Transactions of American Mathematical Society 300(2): 383–431.
- [36] Sklyar, G.M. and Szkibiel, G. (2013). Controlling a nonhomogeneous Timoshenko beam with the aid of the torque, International Journal of Applied Mathematics and Computer Science 23(3): 587–598, DOI: 10.2478/amcs-2013-0044.
- [37] Tucsnak, M. and Weiss, G. (2009). Observation and Control for Operator Semigroups, Birkhäuser Advanced Texts, Basel/Birkhäuser, Boston, MA.
- [38] Wonham, W.M. (1985). Linear Multivariable Control: A Geometric Approach, 3rd Edn., Springer, New York, NY.
- [39] Zabczyk, J. (1976). Complete stabilizability implies exact controllability, Seminarul de Ecuatii Functional, Universitatea din Timisoara 38: 1–7.
- [40] Zabczyk, J. (1992). Mathematical Control Theory: An Introduction, Systems & Control: Foundations & Applications, Birkhäuser, Boston, MA.
- [41] Zeng, Y., Xie, Z. and Guo, F. (2013). On exact controllability and complete stabilizability for linear systems, Applied Mathematical Letters 26(7): 766–768.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-97a7e562-5618-46f9-802e-02151925ed3f