PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Research on Poppers Used as Electrical Connectors in High Speed Textile Transmission Lines

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents results of research on poppers used as electrical connectors connecting fragments of textile signal lines. These lines can be used in intelligent clothing for connecting electronic modules implemented in it. Intelligent (smart) clothing can be used, among others, in the health monitoring of the elderly, newborn babies, or people working in hazardous conditions, for example, firefighters and soldiers. The aim of the present study was to examine the usefulness of poppers, widely used in clothing, as electrical connectors connecting parts of the textile signal lines designed for transmission of high-speed digital signals. The paper presents examples of measured parameters characterizing transmission properties of two fragments of the coplanar, textile transmission line connected to each other using conventional poppers. The presented measurement results contain the so-called s parameters, characteristic impedance of the poppers, and eye measurements characterizing distortions of digital signals passing through the tested line. In the article, the effect of temperature and humidity of air surrounding the tested poppers on their characteristic impedance was also presented. This property and its stability are important in signal lines designed for high-speed data transmission.
Rocznik
Strony
228--235
Opis fizyczny
Bibliogr. 32 poz.
Twórcy
  • Technical University of Lodz, Department of Architecture of Textiles, Żeromskiego St. 116, 90-924 Łódź, Poland
Bibliografia
  • [1] Harms H., Amft O., Roggen D., Tröster G., (2009). Rapid prototyping of smart garments for activity-aware applications. Journal of Ambient Intelligence and Smart Environments 1(2),1–15.
  • [2] Li L. et all, (2010). Design of Intelligent Garment with Transcutaneous Electrical Nerve Stimulation Function Based on the Intarsia Knitting Technique. Textile Research Journal, 80(3), 279-286.
  • [3] M. Stoppa, A. Chiolerio, (2014). Wearable Electronics and Smart Textiles: A Critical Review, Sensors, 14, 11957-11992.
  • [4] L Van Langenhove. (Ed.). (2007). Smart Textiles for Medicine and Healthcare, Materials, Systems and Applications, (I ed.). Woodhead Publishing.
  • [5] Bouwstra S. et al., (2009). Smart Jacket Design for Neonatal Monitoring with Wearable Sensors, BSN ‘09 Proceedings of the 2009 Sixth International Workshop on Wearable and Implantable Body Sensor Networks, IEEE Computer Society Washington, DC, USA, 162-167.
  • [6] Amato G., Chessa S., Conforti F., Macerata A., Marchesi C.,(2005). Health Care Monitoring of Mobile Patients, ERCIM News, 60, 69-70.
  • [7] Carole A. et al., (2005). Development of Electronic Textiles to Support Networks, Communications, and Medical Applications in Future U.S. Military Protective Clothing Systems, IEEE Transactions on Information Technology in Biomedicine, 9(3), 402-406.
  • [8] Paradiso R., Wolter K., (2005). Wealthy - A Wearable Health Care System: New Frontier on E-Textile. MST News, 2, 10-11.
  • [9] Stempień Z., Rybicki E., Rybicki T., Leśnikowski J. (2015). Inkjet-printing deposition of silver electroconductive layers on textile substrates at low sintering temperature by using an aqueous silver ions-containing ink for textronic applications. Sensors and Actuators, B: Chemical, 224, 714-725.
  • [10] Kazani I., Declercq F., Scarpello M. L., Hertleer C., Rogier H., Vande Ginste D., De Mey G., Guxho G., L. Van Langenhove L., (2014), Performance study of screen-printed textile antennas after repeated washing. Autex Research Journal 14(2): 47-54.
  • [11] Scarpello M. L., Kazani I, Hertleer C., Rogier H.,(2012), Stability and Efficiency of Screen-Printed Wearable and Washable Antennas, 11, 838-841.
  • [12] Minyoung S., (2010). E-Textiles For Wearability: Review Of Integration Technologies. Retrieved 03 29, 2016, from http://www.textileworld.com/Articles/2010/April/Issue/Etextiles_Feature.html.
  • [13] Agilent Technologies, AN 154, S-Parameter Design, Application Note.
  • [14] On Semi, AND9075/D, Understanding Data Eye Diagram Methodology for Analyzing High Speed Digital Signals, Application Note.
  • [15] Leśnikowski J., Textile Transmission Lines in the Modern Textronic Clothes, (2011). FIBRES & TEXTILES in Eastern Europe, 19(6), 89-93.
  • [16] Tokarska M., Leśnikowski J., Modeling of selected electric properties of textile signal lines using neural networks, (2014). Textile Research Journal, 84(3), 290-302.
  • [17] Chedid M. et al., (2007). Experimental analysis and modelling of textile transmission line for wearable applications, International Journal of Clothing Science and Technology, 19(1), 59-71.
  • [18] Cottet D. et all, (2003). Electrical Characterization of Textile Transmission Lines. IEEE Transactions on Advanced Packaging, 26(2), 182-190.
  • [19] Locher I, Tröster G., (2007). Screen-printed Textile Transmission Lines, Textile Research Journal, 77(11), 837-842.
  • [20] Post E., et al., (2000). E-boidery: Design and fabrication of textile-based computing, IBM Systems Journal, 39, 840-860.
  • [21] Kursun-Bahadir S., Effect of Textile Pretreatment Processes on the Signal Transferring Capability of Textile Transmission Lines, (2015). Fibres & Textiles in Eastern Europe, 2,(110), 55-62.
  • [22] Dhawan A. et al., (2004). Woven Fabric-Based Electrical Circuits: Part II: Yarn and Fabric Structures to Reduce Crosstalk Noise in Woven Fabric-Based Circuits, Textile Research Journal, 74, 955-960.
  • [23] Dhawan A. et al., (2005). Fiber-Based Electrical and Optical Devices and Systems, Textile Progress, 36(2-3), 1-84.
  • [24] Jayoung Cho et al., (2007). Design and Evaluation of Textile-Based Signal Transmission Lines and Keypads for Smart Wear, Human-Computer Interaction, Part II, HCII, LNCS 4551, 1078-085.
  • [25] Locher I, Tröster G & Kirstein T, (2005). From Smart Textiles to Wearable Systems, MST News, 2, 12-13.
  • [26] Breed G., (2003). Bit Error Rate: Fundamental Concepts and Measurement Issues, High Frequency Electronics, 1, 46-48.
  • [27] Nahman N. S. et al., (1980). Applications of time-domain methods to microwave measurements, Proc. Inst. Elec. Eng., 2(127), 99-106.
  • [28] Agilent Technologies, AN 1304-2 Time Domain Reflectometry Theory, Application Note, Literature Number 5966-4855E.
  • [29] Agilent Technologies, AN 1304-1 Evaluating Microstrip with Time Domain Reflectometry, Application Note, Literature Number 5968-0007E.
  • [30] Hsue Ch., (1997). Reconstruction of Nonuniform Transmission Lines from Time-Domain Reflectometry, IEEE Transactions on Microwave Theory and Techniques, 45(1), 32-38.
  • [31] Michalak Ł., (2013). Properties of the electrical connectors in the form of poppers (in polish: Właściwości złącz elektrycznych w postaci nap odzieżowych), dissertation thesis, Lodz University of Technology, Department of Architecture of Textiles.
  • [32] Leśnikowski J., (2015). New Kind of Textile Transmission Line with an Impedance of 50 Ohms, FIBRES & TEXTILES in Eastern Europe, 23(2), 51-54.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-97a57d93-d79c-4537-ba19-604726a054d1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.